
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Computer Science

3D Object Reconstruction using
Point Pair Features

Adrian Haarbach

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Computer Science

3D Object Reconstruction using
Point Pair Features

3D Objekt Rekonstruktion mit
Point Pair Features

Author: Adrian Haarbach
Supervisor: Wadim Kehl
Advisor: PD Dr. Slobodan Ilic
Date: March 15, 2015

I assure the single handed composition of this bachelor’s thesis only supported by declared
resources.

Ich versichere, dass ich diese Bachelor’s Thesis selbständig verfasst und nur die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

Munich, March 15, 2015 Adrian Haarbach

Acknowledgments

First of all, I would like to thank Prof. Dr. Nassir Navab and my supervisor PD Dr.
Slobodan Ilic whose lectures inspired me to dive deeper into the interesting topic of 3D
Computer Vision and who provided me with the possibility to pursue my thesis inside the
most enjoyable research group at their chair.

Next, a big applause to my advisor Wadim Kehl, who never stopped pushing me for-
ward during the long journey of this thesis. His fun attitude and language skills made
working with him a real pleasure. The many suggestions during our fruitful discussions
kept me moving and certainly pushed my limits.

Additionally, I would like to thank all the people that I met at Nassir’s Computer Aided
Medical Procedures chair at TUM, in particular in Slobodan’s computer vision research
group. I am most grateful that I was joined by Mira during our struggles for thesis perfec-
tion. Through her impressive rendering skills in Blender, she provided me with beautiful
synthetic sequences. A highlight in our research life was certainly the day we recorded
the new real sequences with David, after we nearly failed to pull off the old markers from
the board to glue on the new ones. Special thanks to Tolga for giving valuable advice that
accelerated my progress in implementing the point pair features after I found out that we
had been working on similar topics.

Finally, I would like to thank my family for the support during my studies, my father
for proof-reading this thesis, my friends for reminding me of the fun part of life and my
beloved Florian for his patience, care and support.

vii

Abstract

This work aims at reconstructing 3D objects by robustly and accurately registering mul-
tiple range images of an object from different viewpoints.

An initial alignment between any two overlapping scans is obtained via a voting scheme
which matches similar point pair features and thus constrains the relative 6DoF rigid body
motion between the poses of two viewpoints. This initial alignment is then refined using
pairwise point-to-plane ICP. The result of this step is a tree of relative pose constraints.

In a subsequent global optimization step, we build up a graph of absolute poses, our
vertices, from the tree of initial relative pose estimates by adding further edges. We add
edges for the k-nearest-neighbors of a vertex, taking the translational difference of the
corresponding poses as a distance measure. Constraints between two vertices are added
for each closest point correspondence in their respective point clouds. The global point-to-
plane energy is then minimized iteratively using the nonlinear least-squares method called
Multiview Levenberg-Marquardt ICP.

This refined registration of all the scans used may now be integrated and their corre-
sponding point clouds fused and then meshed to obtain the final reconstructed 3D object
mesh.

ix

Abbreviations

2.5D 2.5 dimensions: usually refers to a depth or range image

6DoF 6 degrees of freedom: usually a rigid body motion

ATE Absolute Trajectory Error

BA Bundle Adjustment

DoF Degree(s) of Freedom

GICP Generalized ICP

ICP Iterative Closest Point

LM Levenberg-Marquardt

LM-ICP Levenberg-Marquardt ICP

NLS Non-linear Least Squares

PCA Principal Component Analysis

PPF Point Pair Feature

RANSAC RANdom SAmple Consensus

RGB-D Red Green Blue - Depth: multimodal color and range image

RMS Root Mean Squared

RPE Relative Pose Error

SE(3) Special Euclidean group of rigid body motions

SfM Structure from Motion, sometimes also Structure and Motion

SO(3) Special orthogonal group of rotation matrices

SLAM Simultaneous Localization And Mapping

SVD Singular Value Decomposition

TSDF Truncated Signed Distance Function

VO Visual Odometry

xi

Contents

Acknowledgments vii

Abstract ix

Abbreviations xi

1. Introduction 1

2. Previous work 3
2.1. 3D object recognition . 3
2.2. 3D object reconstruction . 4
2.3. Multiview refinement . 5

3. Background 7
3.1. Range images . 7
3.2. Pinhole camera model . 8
3.3. Rigid body motion . 9

3.3.1. Rotation and transformation matrices 9
3.3.2. Unit quaternions . 9
3.3.3. Lie algebra of twists . 11
3.3.4. Infinitesimal rotations . 13

3.4. Principal component analysis . 14
3.4.1. Normal estimation . 15
3.4.2. Curvature estimation . 15

3.5. Nearest neighbor search . 16
3.5.1. Exhaustive search . 16
3.5.2. k-d tree . 16
3.5.3. Distance transform . 17
3.5.4. Projection-based matching . 17

3.6. Iterative Closest Points . 18
3.6.1. Taxonomy . 19
3.6.2. Point to point . 21
3.6.3. Point to plane . 22
3.6.4. Generalized ICP . 23
3.6.5. Levenberg-Marquardt ICP . 24

4. Approach 27
4.1. Preprocessing . 28

4.1.1. Backprojection . 28

xiii

Contents

4.1.2. Segmentation . 28
4.1.3. Downsampling . 29
4.1.4. Denoising . 29
4.1.5. Normal and curvature estimation . 29

4.2. Pairwise coarse alignment . 30
4.2.1. Point pair feature . 30
4.2.2. Learning . 31
4.2.3. Matching . 33
4.2.4. Pose clustering and averaging . 37

4.3. Pairwise refinement . 39
4.3.1. Correspondences . 39
4.3.2. Transformation . 40

4.4. Multiview refinement . 41
4.4.1. Global registration error . 41
4.4.2. Sparsity structure of the linearized system 42
4.4.3. Pose graph optimization . 43

5. Evaluation 45
5.1. Datasets . 45
5.2. Qualitative results . 47

5.2.1. Discussion . 47
5.3. Quantitative results . 52

5.3.1. Discussion . 53

6. Summary and outlook 57
6.1. Conclusion . 57
6.2. Future work . 57

Appendix 58

A. Core Algorithms 59
A.1. Point set PCA . 59
A.2. Point to point ICP . 60
A.3. Point to plane ICP . 62
A.4. LM-ICP . 64

Bibliography 67

xiv

1. Introduction

Figure 1.1.: The different components of the 3D modeling process. [32]

3D Object Reconstruction has been an increasingly active topic of research since the intro-
duction of cheap multimodal color and range (RGB-D) cameras like the Kinect. Those de-
vices provide, together with the color image, a range image of the object. This is sometimes
referred to as a depth or 2.5 dimensions (2.5D) image, since it contains depth information,
yet only the part of the object that is visible from the corresponding camera location. So to
reconstruct the whole object, one needs multiple of these shots from different viewing an-
gles. The challenge in 3D Object Reconstruction is to find correspondences between these
views, register them into a global coordinate system, integrate them into a single represen-
tation and then reconstruct the object mesh to get an actual 3D model of the object (figure
1.1). One can generally divide algorithms which tackle the problem of 3D Object Recon-
struction into multiple categories.

The first category is also the fastest one, since it uses a markerboard on which to place
the object, so there is always quite a good estimate of the relative camera location towards
the object. However, this approach brings some serious practical limitations: one cannot
reconstruct the bottom side of the object, since it is laying on the markerboard. Addition-
ally, once the object is moved on top of the board, the poses between object and board
don’t correspond anymore. Also, only objects smaller than the markerboard can be recon-
structed, since enough markers need to be visible for the pose estimation to work. Finally,
some objects are just fixed or too heavy to be put on a board.

The second category uses the 2D color images and pixel-to-pixel correspondences to
get an estimate of the relative motion between two overlapping frames. Dense methods
calculate a flow field for each pixel and are usually called Visual Odometry (VO). Sparse
methods only compute correspondences for a subset of the pixels and are the basis of most
(although not all) Simultaneous Localization And Mapping (SLAM) based approaches due
to their speed. Either dense or sparse, it is important that the object exhibits enough varia-
tion in texture, in the dense setting to avoid the aperture problem, in the sparse setting to
get good corner points for feature detection which can then be used together with a feature
descriptor for matching.

1

1. Introduction

April 26, 2005 17:42 WSPC/INSTRUCTION FILE mian˙ijsm˙final

2 Ajmal Mian et al.

Multiple
2.5D Views

Registered 2.5D Views

3D ModelIntegrated Views

Object Acquisition Correspondence Registration

Integration Reconstruction

Fig. 1. A block diagram showing different components of the 3D modeling process.

Fig. 2. (a) A point cloud of a view of the isis. (b) Three selected correspondences are marked
between two views of the isis. (c) The two views after registration. Notice that the contribution
of each view appears in a different gray shading. (d) The complete 3D model of the isis after
integration and reconstruction of its 33 registered views.

of the object’s surface in the form of point clouds (Fig. 2(a)). In the next step,

correspondences are established between overlapping views. Points on two different

views that correspond to the same point on the object are said to be corresponding

points (Fig. 2(b)). These correspondences can then be used to derive a rigid trans-

formation (rotation matrix R and translation vector t) that aligns the two views

(see Fig. 2(c)). R and t are estimated with the objective of minimizing the distance

error E between the corresponding pairs of points of the scene (S) and the model

(M) based on Eqn. 1.

E =
n∑

i=1

∥SiR + t − Mi∥ (1)

This is a common objective used by most existing registration algorithms how-

ever they use different strategies to establish correspondences between the views.

Once all the views are registered in a single coordinate basis, they are integrated

and reconstructed to make a complete seamless 3D model (Fig. 2(d)). Fig. 1 shows

Figure 1.2.: Range image integration. [32]

The third category is range image integration (figure 1.2), which uses the 2.5D depth
shots directly. What happens if it is dark, the object to reconstruct is textureless or has been
acquired with a range scanning system rather than with an RGB-D camera? In this case, we
can drop the useless color image and switch to a purely geometry based approach. These
approaches mostly rely on some variant of the Iterative Closest Point (ICP) algorithm to it-
eratively make the 2.5D point clouds overlap. For this to work, however, there can only be
a small motion between consecutive frames, otherwise the ICP algorithm doesn’t converge
and one loses track of the camera motion. The KinectFusion [35] algorithm is probably the
most prominent recent technique in this category, which works good and efficient on live
data since frames are acquired and processed in real time at around 30Hz. One must really
shake the depth sensor drastically to violate the small motion assumption to lose tracking,
so this approach needs a lot of frames to reconstruct one single object. Additionally, it is
a Truncated Signed Distance Function (TSDF) volume based approach, meaning that new
frames are readily integrated into the global volume as they come in. This is necessary to
keep space requirements of such a real time algorithm low, but is not optimal for the most
accurate reconstruction of an object, since the model volume necessarily accumulates drift
that can’t be optimized away at a later stage.

We propose a new method for range image integration that eliminates most of the short-
comings of previous methods while only using a few range images. The only condition
they should fulfill is that the object is sufficiently covered and that there exist areas of
overlap between pairs of frames. We make no assumption about the relative motion be-
tween consecutive frames, although our algorithm is accelerated by telling him to how
many of the last frames he should try to match the new frame. We do not use a volumetric
model representation to integrate the registered view, but rather just assign each frame its
estimated camera pose (like it is done in SLAM approaches), which we further optimize
for. This allows us to subsequently reduce the drift in pairwise and multiview refinement
stages, based on optimizing the pose graph of the cameras associated to each view, which
essentially minimizes the 3D alignment errors defined on the edges in this graph.

2

2. Previous work

2.1. 3D object recognition

The task in 3D object recognition is to recognize a known 3D model, usually given as a
mesh or a point cloud, in a scene. The more sophisticated algorithms additionally give
a 6 degrees of freedom (6DoF) pose estimate of the viewpoint from which the scene was
taken in relation to the model.

This can be done in various ways, depending on the format of the scene: camera im-
age, range image, or a combination of both called RGB-D image, which is a pair of regis-
tered multimodal color and depth images. A nice overview and taxonomy of the different
classes of methods is given in the related work section of [19] and briefly summarized and
extended here.

Camera image based object detection algorithms can be divided into 2 classes. Learning
based approaches like the well known Viola Jones Face Detector [24] use a large amount of
training data and work well for recognizing object classes like faces, cars or chairs. How-
ever, they usually don’t give a pose estimate. Template based approaches like LINEMOD
[18] usually render the high-quality mesh model from different viewpoints with known
ground truth and then match these templates with image patches, using some sort of 2D
feature descriptor like Scale Invariant Feature Transform (SIFT), Speeded-Up Robust Fea-
tures (SURF), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent El-
ementary Features (BRIEF) or Histogram of oriented gradients (HOG). These provide a
quantized pose estimate.

Range image based object detection and correspondence estimation is reviewed in [32].
The standard approach for object pose estimation, ICP, needs a good initial estimate and is
thus not suitable for object detection, but often used as a subsequent pose refinement step
after the object is detected. More recent, robust approaches for object detection, which do
not require a good initial estimate, all use 3D locally invariant features - based on point
configurations, surface normal distributions around a point, surface curvature or relative
angles between normals. These approaches have names like spin-image [23], point-pair
[33], Point Pair Feature (PPF) [8] and point-pair histograms [40, 47].

RGB-D image based algorithms use the multi-modal information from a registered cam-
era and range image to improve correctness and precision. An extension of LINEMOD [18]
to also include range information is given in [19]. In the opposite way, an extension of the
PPF [8] to the Color Point Pair Feature is given in [6].

3

2. Previous work

2.2. 3D object reconstruction

Tracking, Mapping, Simultaneous Localization And Mapping (SLAM), Structure from Motion
(SfM) and Visual Odometry (VO) are all different terms coming from different communities
for basically the same problem: maintaining an estimate of the current camera position
(tracking / motion) and of the environment (mapping / structure) while moving a camera
in space. These ingredients, together with a final surface reconstruction step, are also the
recipe for most 3D object reconstruction algorithms.

The basic steps of the 3D model acquisition pipeline, consisting of view planning, reg-
istration and surface reconstruction were first described in great detail in the fundamental
work [39] and can be found in nearly all of the follow-up work on 3D object reconstruc-
tion. The authors built their own structured light projector and camera setup to capture
range images from multiple views and then register them with each other using ICP [50]
for alignment. Finally, they merge and render the model. This approach uses only range
images.

Recently, real-time, dense, solely depth-based reconstruction algorithms like KinectFu-
sion [35] became quite popular. The main drawback of these depth-based approaches is
the small motion assumption between consequtive frames, which is needed for ICP to con-
verge. This is usually given if the frames are aquired and processed in real time and the
camera is moved smoothly, but not if one wants to reconstruct an object from a few depth
images, with no prior knowledge about their initial alignment. However, SLAM++ [41]
circumvents this problem by doing a frame to model tracking instead of a frame to frame
tracking, for which they first detect known objects in the scene using a variant of [8], and
then track each new camera frame against the detected objects.

Another option, which was especially common before the introduction of consumer
depth cameras like the Kinect around 2009, is to rely only on the color images. The goal
of dense methods is to calculate a flow field for each pixels that maximizes the photo-
consistency between multiple images brought into reference. A survey of these techniques
can be found in [43] and in the Mutliple View Geometry book [16]. Sparse methods
are usually faster, but less accurate, and are thus used in most SLAM algorithms, in-
cluding Parallel Tracking and Mapping (PTAM) [27] and Large-Scale Direct Monocular
SLAM (LSD-SLAM), where the latter one is actually semi-dense, a hybrid between sparse
and dense. But even with cheap RGB-D cameras, solely image based reconstruction tech-
niques are still quite useful, especially in outdoor environments where structured light
sensors fail due to infrared radiation and on mobile devices which don’t (yet) have inte-
grated RGB-D cameras. A quite recent work in this area which even runs on mobile CPU’s
is LSD-SLAM [11]. The main drawback of these photo-consistency based approaches is the
assumption of sufficiently textured Lambertian surfaces and good lightning conditions.
This can be troublesome in industrial applications where most workpieces are uniformly
colored, maybe even out of shiny metal and with no control on the lightning.

As in object recognition, RGB-D based approaches have also been introduced in track-
ing, including dense methods like [45], Dense Visual Odometry (DVO)-SLAM [25] or
sparse methods like RGB-D-SLAM[10]. These combine the advantages of the multiple
modalities and are thus more stable and accurate in general.

4

2.3. Multiview refinement

2.3. Multiview refinement

Most SLAM algorithms build up a pose graph of camera positions and landmarks, con-
nected by some sort of constraints, in their main thread. In the background, they usually
run loop closure detection and pose graph optimization to globally reduce the accumu-
lated drift from the pairwise alignment.

The problem of drift also occurs in 3D object reconstruction based on pairwise align-
ment, which is why the last step in algorithms that aim for accuracy is to refine the pose
graph of the camera pose estimates based on a global registration error formulation. We
call this step multiview refinement, in which the error function depends on the camera
poses only and we try to reduce the 3D registration error of point correspondences. This
is related to Bundle Adjustment (BA), in which in addition to the camera poses, the cam-
era parameters are adjusted and the 2D reprojection error in each image pair is minimized
instead.

In our approach, we use range images only, for which ICP is the method of choice to
reduce pairwise 3D registration errors. But since standard ICP - with its closed form solu-
tion - only works for pairwise registration, [12] proposed an extension of ICP for multiple
views, called Multiview Levenberg-Marquardt ICP (LM-ICP). Reducing the global regis-
tration error, which sums up the registration error from all pairs of frames, is done via
Non-linear Least Squares (NLS) optimization.

The relationship between different frames can easily be expressed in graph form, e.g. by
an adjacency matrix. Kummerle et al. [28] provides a generic framework for graph based
optimization, which is used in most of the previously discussed SLAM Algorithms like
[41, 25, 11, 10]. To adapt this framework to our need of solving the multiview refinement
problem, one has to define vertices and edges. In our context, a vertex is a camera pose in
the global reference frame. An edge is a closest point correspondence - as in ICP - between
pairs of overlapping point clouds.

5

2. Previous work

6

3. Background

3.1. Range images

Figure 3.1.: Range image acquired with a structured light sensor. The depth at each pixel
is color coded where blue means close and red means far away. Note that for
the invalid pixels in white, the sensor is unable to obtain a measurement. This
happens usually at object boundaries or at reflective or transparent surfaces.

A range image is a 2D image where each pixel denotes the distance between the sensor
and a point in the scene. In calibrated systems, this distance can actually be given in
metric units. Since a range image provides the partial 3D information of an object from a
specific viewpoint, organized in a 2D image grid, these images are sometimes called 2.5D
images. The most prominent techniques to acquire such images are stereo triangulation,
sheet of light triangulation, structured light or time of flight cameras. In recent years, the
structured light sensors got a boost through the introduction of consumer hardware such
as Microsoft’s Kinect and similar devices with names such as PrimeSense or Asus Xtion.
These devices usually combine the depth or range image with a color image, typically
encoded in the RGB color space, and are thus called RGB-D cameras. For our purposes,
we are only interested in the range images, so the input data can be acquired by any of the
techniques mentioned above.

7

3. Background

3.2. Pinhole camera model

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

Figure 3.2.: The pinhole camera model [16][p.154]

The process by which the real 3D points of a scene are mapped into the 2D image plane
can easily be modeled with the pinhole camera model. This amounts to a central projection
of the 3D points onto the image plane, with the camera center C as the center of projection.
The line from the camera centre perpendicular to the image plane is called the principal
axis, and the point where the principal axis meets the image plane is called the principal
point p. The distance between camera center and image plane is the focal length f . Since
pixels need not to be quadratic, two different focal lengths fx and fy are used in practice.
Usually, the origin of the camera coordinate system (the upper left corner of an image) and
the camera center C do not coincide, which is why we need the offsets ox and oy. Hartley
and Zisserman [16][Chapter 6.1] wrote the de facto reference for this topic.

The quadruple (fx, fy, ox, oy) is called the intrinsic parameters of a camera and can be
obtained via standard calibration procedures. In this process, skew as well as radial distor-
tion parameters can also be obtained. We assume that before processing the images, these
effects have been removed so that the pinhole camera model assumption holds true.

Multiplication of the camera calibration matrixK, which contains these intrinsics, with a
3D-world point in inhomogeneous coordinates X = (X,Y, Z)T yields a 2D-image point in
homogeneous coordinates, which has to be divided by its depth Z to get its inhomogenous
pixel coordinates x = (u, v)T :

K ∗ X =



fx ox

fy oy
1


 ∗

Ö
X
Y
Z

è
=

Ö
fxX + oxZ
fyY + oyZ

Z

è
≡
ÇfxX

Z + ox
fyY
Z + oy

å
=

Ç
u
v

å
= x (3.1)

Note that this central projection, a mapping PK : R3 → R2, is in general not invertible
for standard color cameras, since one loses the depth information because of the division
through Z. However, range cameras acquire and store these depth values in the range
image d at each pixel location d(u, v) = Z. With this, we can easily back-project a 2D pixel
x = (u, v)T into a 3D point X, which is a necessary preprocessing step for our algorithm:

P−1
K (u, v, Z) =

Ç
(u− ox) ∗ Z

fx
,
(v − oy) ∗ Z

fy
, Z

åT
= (X,Y, Z)T = X (3.2)

8

3.3. Rigid body motion

3.3. Rigid body motion

Most of the derivation here follows Ma et al. [30][Chapter 2]1 closely, which we recommend
for further details.

A rigid body motion is a transformation in 3D Euclidean space which preserves distance
and orientation between any pair of points on the object. It is formalized by the map

g : R3 → R3;x→ g(x)

||g(p)− g(q)|| = ||p− q|| ∀p, q ∈ R3

g(p)× g(q) = g(p)× g(q) ∀p, q ∈ R3

The collection of all these transformation forms a Lie Group, called the Special Euclidean
group of rigid body motions (SE(3)). Each g = (R, t) ∈ SE(3) consists of a translational
part t and a rotational part R and has 6 degrees of freedom (6DoF) in total. The transla-
tional part is easily minimally parameterized by a displacement vector t ∈ R3, while there
exist multiple parameterizations for the rotational part.

3.3.1. Rotation and transformation matrices

One way is via 3 x 3 rotation matrices R ∈ SO(3) in the Special orthogonal group of
rotation matrices (SO(3)), which must fulfill RRT = I and |R| = 1. From orthogonality, it
easily follows that R−1 = RT . The whole SE(3) transformation g as well as its inverse g−1

can thus be expressed by the 4× 4 matrices T and T−1:

T =

ñ
R t
0 1

ô
, T−1 =

ñ
RT −RT t
0 1

ô
(3.3)

This representation comes in handy when points need to be transformed, since one has to
carry out a simple matrix vector multiplication. A point x ∈ R3, given as a column vector
xh = [x1, x2, x3, 1]T in homogeneous coordinates is transformed via T ∗ xh. Moreover,
multiple transformations can be composed by simple matrix matrix multiplication of their
homogeneous 4× 4 matrix representations.

However, the rotation matrix R consists of 9 parameters, even though it only has 3 de-
grees of freedom (DoF). This means we can only freely choose 3 entries that automatically
determine the 6 remaining entries through the conditions RRT = I and |R| = 1, which is
inconvenient for several reasons and which is why we also use several other parameteri-
zations of rotations.

First of all, we need to store 12 parameters (the last row of T can be omitted, since it is
always the same for rigid body motions), while only having 6 free parameters.

3.3.2. Unit quaternions

Secondly, we will need to cluster and average a set of rigid body transformations in our ap-
proach. While this is easy for the translational part, since all translation vectors themselves
form an Euclidean space with an intuitive definition of distances and averages, this is hard

1 http://vision.ucla.edu/MASKS/MASKS-ch2.pdf

9

http://vision.ucla.edu/MASKS/MASKS-ch2.pdf

3. Background

for rotation matrices R ∈ SO(3) since we neither have a definition of distance between two
rotations matrices nor are they closed under addition, which is needed for calculating av-
erages. For this reason, we will revert to an alternative representation of the rotational part
of the rigid body motion with unit quaternions.

A quaternion q is basically the extension of a complex number c = a+ bi, i2 = −1 from 2
to 4 dimensions: q = w + xi+ yj + zk, i2 = j2 = k2 = ijk = −1. Just as complex numbers
can be used to represent rotations in R2 (remember Euler’s formula eiϕ = cos (ϕ)+i sin (ϕ)
), quaternions can be used to represent rotations in R3.

Formally, a quaternion q ∈ H may be represented by a vector q = [qw, qx, qy, qz]
T =

[qw, qx:z]
T together with the definitions:

adjoint : q̄ = [qw,−qx:z]
T

norm : ||q|| =
»
q2
w + q2

x + q2
y + q2

z

inverse : q−1 =
q̄

||q||

A unit quaternion is a quaternion with unity norm, ||q|| = 1 and can be used to represent
the orientation of a rigid body in 3D Euclidean space. Specifically, a unit quaternion can be
retrieved from the axis-angle representation, yet another commonly used representation
for rotations, with a rotation φ about the normalized rotation axis n, ||n|| = 1 via

q(φ, n) = [cos(0.5φ), n sin(0.5φ)]T

Moreover, there are closed form solutions for converting a unit quaternion into a rotation
matrix as well as the other way around which we will use extensively. Since they don’t
look as neat as the previous formula, we refer to [7] for the details.

Quaternion distance

θ(q1, q2) = cos−1
Ä
2〈q1, q2〉2 − 1

ä
∈ [0◦, 180◦] (3.4)

d(q1, q2) = 1− 〈q1, q2〉2 ∈ [0, 1] (3.5)

For pose clustering we need the notion of distance between two unit quaternions q1 and
q2. It turns out that either one of the above quantities θ, d gives a rough estimate of the
distance in orientation between two quaternions, while the angle θ or the dimensionless
quantity d are smaller the closer the rotations are to each other.2

Quaternion average

For pose cluster averaging we need the notion of an average orientation, given a set of
similar orientations. The findings in [15] suggest that the component-wise mean of mul-
tiple unit quaternion vectors is indeed a good approximation of the average orientation.
This is justified if the underlying orientations are assumed to be drawn from a Gaussian
distribution, for which the quaternion mean is the least squares estimate of their linear

2 http://math.stackexchange.com/questions/90081/quaternion-distance

10

http://math.stackexchange.com/questions/90081/quaternion-distance

3.3. Rigid body motion

approximation (subsection 3.3.4). However, before taking the mean, one has to make sure
that the quaternions to average lie on the same half-sphere of H, since they double-cover
the space of rotations, meaning that q and −q represent the same orientation. Given a set
of similar orientations, represented by their quaternions q1, q2, . . . , qn, their average orien-
tation is given by the renormalized mean quaternion, where we had to flip quaternions
which live on the other side of the half sphere as the reference quaternion q1

q̄gramkow =
q̃

||q̃|| , q̃ =
1

n

n∑

i=1

qi ∗ sign(〈q1, qi〉) (3.6)

Another way to average orientations [31], which circumvents the problems of flipping
and renormalization, is based on the eigenvalue decomposition of the symmetric matrix
formed by the sum of the outer products of the quaternions. The average quaternion is
then just the eigenvector corresponding to the largest eigenvalue of that matrix.

q̄markley = e1(A), A =
1

n

n∑

i=1

qi ∗ qTi , (3.7)

e1(A) : eigenvector corresponding to largest eigenvalue λ1 > λ2,3,4

It is further possible to incorporate weights into these formulations to compute a weighted
mean. Both of the above methods are reviewed and extended in [17].

3.3.3. Lie algebra of twists

Lastly, we will need to optimize over the space of rigid body motions in a numerical
minimization scheme. For this, a minimal representation of g would allow us to do un-
constrained minimization. While this can in principle also be done over the 7-Degree(s)
of Freedom (DoF) combination of a translation vector with a unit quaternion, where we
would have to re-normalize the quaternion after each update step, it is much more elegant
to do so via the 6DoF twist parameterization.

Each rigid body transformation matrix T in the Lie group T ∈ SE(3) has a minimal
representation as a twist ξ̂ in its associated Lie algebra ξ̂ ∈ se(3). Each twist is uniquely
defined by its twist coordinates ξ ∈ R6:

ξ = (ξ1, . . . , ξ6)T = (u1, u2, u3, ω1, ω2, ω3)T = (uTωT)T

where u represents the translational velocity and ω the rotational velocity.
Let us first define the operator [.]x, which is an isomorphism between R3 and the space

so(3) of all 3x3 skew symmetric matrices ([ω]x = −[ω]Tx).

[.]x : R3 → so(3) ⊂ R3×3; [ω]x =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




It allows to express the cross product p×q with p, q ∈ R3 as a matrix-vector multiplication:
p × q = [p]x ∗ q. Furthermore, it allows to convert from twist coordinates to a twist using

11

3. Background

the hat operator:

∧ : R6 → se(3) ⊂ R4×4; ξ̂ = ξ∧ =

ñ
u
ω

ô∧
=

ñ
[ω]x u

0 0

ô
The mapping from the twist in the Lie algebra to the transformation matrix in the Lie group
is done by matrix exponentiation:

exp : se(3)→ SE(3)

exp(ξ̂) = exp

Çñ
[ω]x u

0 0

ôå
=

ñ
e[ω]x V u

0 1

ô
=

ñ
R t
0 1

ô
(3.8)

We can convert the vector ω ∈ R3, which represents rotational velocity, into an axis angle
representation by φ = ||ω||, n = ω

φ , to obtain a closed form solution for the Taylor series

expansion e[w]x =
∑∞
i=0

[ω]ix
!i using Rodrigues’ rotation formula:

e[w]x = e[n]xφ = I + sinφ[n]x + (1− cosφ)[n]2x

and similarly for V

V = I +
1− cosφ

φ
[n]x +

φ− sinφ
φ

[n]2x

To get from twist coordinates ξ ∈ R6 to a transformation matrix T ∈ SE(3) ⊂ R4×4 one
first has to apply the hat operator ∧ and then the exponential map exp. The other direction
is possible as well, by first applying the inverse of the exponential map, called the logarith-
mic map log, and then the inverse of the hat operator, called the vee operator ∨. For our
application however, we only need the forward direction, which is why just summarize
the different operators here:

ξ ∈ R6 ∧(hat)−−−−⇀↽−−−−
∨(vee)

ξ̂ ∈ se(3)
exp−−⇀↽−−
log

T ∈ SE(3)

Every Lie group, such as SO(3) and SE(3), is a group that is also a smooth manifold,
with the property that the group operations of multiplication and inversion are smooth
maps. They can locally be approximated by their corresponding Lie algebras so(3) and
se(3), which form the tangent space of the group at the identity. This allows one to do
calculus on the elements of the Lie algebra, such as calculating derivatives, which we will
need for numerical minimization.

In the Lie algebra, a point x ∈ R3 is transformed by a twist via [30][p.32] :ñ
y
0

ô
=

ñ
[ω]x u

0 0

ô ñ
x
1

ô
=




−ω3x2 +ω2x3 +u1

ω3x1 −ω1x3 +u2

−ω2x1 +ω1x2 +u3

0


⇔ y = w × x+ u

The Jacobian of the twist ξ̂ is calculated by partial derivates of y = [y1, y2, y3]T and the

12

3.3. Rigid body motion

twist coordinates ξ = (u1, u2, u3, ω1, ω2, ω3)T [44] :

J =
∂y

∂ξ
=




∂y1
∂ξ1

. ∂y1
∂ξ6

...
...

∂y3
∂ξ1

. ∂y3
∂ξ6


 =




1 0 0 0 x3 −x2

0 1 0 −x3 0 x1

0 0 1 x2 −x1 0


 (3.9)

3.3.4. Infinitesimal rotations

Figure 3.3.: Small angle triangle

Consider the triangle in fig. 3.3, together with the definitions of sin(θ) = O
H , tan(θ) = O

A
and cos(θ) = A

H , where d = H −A. For small angles |θ| << 1, it holds that d is quite small,
so H ≈ A and we can use the following small angle approximation:

sin(θ) =
O

H
≈ O

H
= tan(θ) =

O

A
≈ s

A
=
A ∗ θ
A

= θ

cos(θ) =
A

H
≈ A+ d

H
=
H

H
= 1

Analytically, this stems from dropping the second and higher order terms of the Taylor
series development of the trigonometric functions around 0 for |θ| << 1:

sin θ = θ − θ3

3!
+
θ5

5!
−+ · · · , cos θ = 1− θ2

2!
+
θ4

4!
−+ · · ·

In 2D, a Rotation Matrix which rotates a given point by the small angle |θ| << 1 around
the origin can thus be approximated as:

R2D(θ) =

ñ
cos θ − sin θ
sin θ cos θ

ô
≈
ñ
1 −θ
θ 1

ô
︸ ︷︷ ︸
r2D(θ)

=

ñ
1 0
0 1

ô
︸ ︷︷ ︸

I

+

ñ
0 −θ
θ 0

ô
︸ ︷︷ ︸

S

which is what we call an infinitesimal rotation matrix r2D(θ). They are just the sum of the
identity I and a skew-symmetric matrix S = −ST . Note that up to second order, r2D(θ) is
really an orthonormal matrix |r2D| = 1 + θ2, rT2D · r2D = I + diag(θ2) and thus defines a
rotation.

In contrast to normal rotations, infinitesimal rotations have some favorable characteris-
tics. They are commutative, which means it doesn’t matter in which order one applies the
different rotations, and the inverse of r2D = I + S is simply given as rT2D = I − S. If one
does the corresponding calculations3, one sees that the appearing θ2 can be dropped.

3 http://mathworld.wolfram.com/InfinitesimalRotation.html

13

http://mathworld.wolfram.com/InfinitesimalRotation.html

3. Background

This concept generalizes to 3D, where any rotation can be defined by rotation of an angle
θ around an axis n (axis angle representation). The approximation one obtains is4:

R(n, θ) ≈ I + θ[n]x (3.10)
infinitesimal rotation

Let us now again have a closer look at the rotation group SO(3), a subgroup of SE(3),
and its corresponding Lie algebra so(3), which is made up of all skew-symmetric ma-
trices as we saw in the last part. The matrices in the Lie algebra are not themselves
rotations; the skew-symmetric matrices are derivatives, proportional differences of rota-
tions. An actual differential rotation, or infinitesimal rotation matrix has the above form
I + θ[n]x, |θ| << 1, n ∈ R3. This means we just found the derivation of the elements θ[n]x
in our Lie algebra so(3) as well as the approximation involved. It is important to note is
that commutativity also generalizes to 3D. This is the reason why our mean-based quater-
nion averaging (3.6) of similar rotations can actually work. Infinitesimal rotations play an
important role in point cloud registration as we will see later. There, we make extensive
use of linearizing the non-linear space of rotations around the identity to get practicable
algorithms for minimization.

3.4. Principal component analysis

To describe a set of scalar values S = {si} = {s1, s2, ..., sNS}, si ∈ R more compactly,
one can compute statistical measures such as the mean and the variance. The mean s̄ =

1
NS

∑NS
i=1 si describes the central value of the distribution of the values, while the variance

V ar(S) = 1
NS

∑NS
i=1(si− s̄)2 describes how far the set of numbers are spread out. For higher

dimensional data, e.g. a set of 3-dimensional points P = {pi} = {p1, p2, ..., pNP}, pi ∈ R3,
the mean generalizes to the component-wise mean, called the centroid p̄ ∈ R3 and the
variance generalizes to the covariance matrix:

Cov(P) =
1

NP

NP∑

i=1

(pi − p̄)(pi − p̄)T = C,C ∈ R3×3

Its 9 entries not only describe how much the points deviate from their centroid, but also
the amount of correlation between the different dimensions.

Principal Component Analysis (PCA) is a statistical method which converts a set of cor-
related variables into a set of linearly uncorrelated ones, using an orthogonal basis trans-
formation. This is done by eigenvalue decomposition of the covariance matrix C. The
eigenvectors of the covariance matrix are called principal components and point in the
direction of largest variance, measured by their associated eigenvalues. Being the eigen-
vectors of the symmetric covariance matrix, the principal components are orthogonal and
thus uncorrelated to each other. The transformation is defined in such a way that the prin-
cipal components e1, e2, e3 ∈ R3 are ordered by the amount of variance in their direction,
i.e. the magnitude of their corresponding eigenvalues λ1 > λ2 > λ3 ∈ R.

4 http://rotations.berkeley.edu/?page_id=1682

14

http://rotations.berkeley.edu/?page_id=1682

3.4. Principal component analysis

3.4.1. Normal estimation

Point clouds acquired by range cameras usually represent dense surfaces, so neighboring
points can be assumed to lie approximately in a common plane. The PCA of these neigh-
boring points can be used for the estimation of the surface normal at that point. The first
two principal components e1, e2 span the plane tangent to the point, while the third princi-
pal component, e3 is the normal of that plane. This is due to the fact that its corresponding
eigenvalue λ3 is the smallest of all three, since the variation of points approximately lying
in a plane is smallest in the direction of the plane normal. For every tangent plane, there are
two possible normals which point in opposite directions. The application of PCA usually
outputs normals that lie on both sides of the surface. Our application requires the normals
to be oriented consistently over the whole surface, meaning that the angle between any
two neighboring normals should be smaller than 90 degrees. On unorganized 3D point
clouds, this problem is NP-hard, but can be solved approximately using a normal flipping
scheme [20]. Luckily, we are dealing with 2.5D data acquired by range cameras and un-
projected into the camera coordinate system, with the optical center as the origin. Because
we can only capture points in front of the camera, it holds for every point X = (X,Y, Z)T

that Z = d(u, v) > 0. To orient all normals towards the camera, which corresponds to
the outside direction of the object’s surface, we have to flip all normals whose angle with
the positive z axis in the camera coordinate system is smaller than 90 degrees. This can
be done by checking the value of the dot product (e3,x, e3,y, e3,z) · (0, 0, 1)T = e3,z > 0. So
we simply multiply all normals that have a positive z component with −1, which gives us
consistently oriented normals. For convenience, we normalize the normals to unit norm.
All together, the surface normal n of a point set is:

n({pi}) = −sign(e3,z)
e3

||e3||
(3.11)

3.4.2. Curvature estimation

Another useful feature of a point lying on a surface is the local surface curvature of the
surface at that location, i.e. the amount of convexity or concavity. For analytic, parameter-
ized curves embedded in R2, this is the norm of the second derivative of the curve with
respect to its parameters. For surfaces, which are embedded in R3, the definition of cur-
vature is more involved, since the local curvature depends on the direction we are taking
it in. One way to calculate the directional curvatures is to rotate a plane around the nor-
mal of the point, as calculated before, and intersect it with the surface. The intersection
is a curve in R2 for which the curvature can be computed. However, there are an infi-
nite amount of directions and thus directional curvatures. If we choose the ones with the
highest and the lowest curvatures, we get the principal curvatures of the surface. To ar-
rive at a scalar valued function for surface curvature, principal curvatures are averaged to
yield mean curvature, or their product is taken, giving Gaussian curvature [26]. On point
clouds, PCA can again be used to get an estimate of the mean curvature of the underlying
surface. In [36], the authors approximate the mean curvature at a point p with what they
call the surface variation σ({pi}) based on N neighbors. It is defined as the ratio of the
largest eigenvalue of the covariance matrix, which quantitatively describes the variation

15

3. Background

along the surface normal, to the sum of all eigenvalues:

σ({pi}) =
λ1

λ1 + λ2 + λ3
(3.12)

A value of σ = 0 indicates a flat region, while the maximum value σ = 1/3 is attained for
totally isotropically distributed points.

3.5. Nearest neighbor search

The computation of nearest neighbors is an important step in the inner loop of the ICP al-
gorithm (section 3.6). Given a query point a and a point set B = {bi} = {b1, b2, ..., bNB}, bi ∈
R3 of NB points, the problem consists in finding the point bi ∈ B that is closest to a [26].
There are several strategies for this nearest neighbor lookup which differ in their running
times and requirements for space and structure of B.

3.5.1. Exhaustive search

This method just calculates all the distances from a to each point in B and chooses the
shortest one. The runtime is O(NB), but there are no necessary preprocessing steps.

3.5.2. k-d tree

(a) median splits (b) the resulting tree

Figure 3.4.: A k-d tree5of (2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2)

This binary space partitioning method needs to precompute an efficient search structure,
called a k-d tree, before doing the actual nearest neighbor lookup. It can be thought of as
an extension of binary search to multiple dimensions, where each inner node represents
a hyperplane that divides the space into two parts. A k-d tree is built by first splitting the
point set B along the median of its first dimension, which becomes the root node. Next, the
remaining two subsets are split according to their second dimension and so on. Once all
dimensions are used up, one starts again with the first dimension. This process generates
a balanced binary tree of height O(log(NB)) in time O(NB log(NB)) in the best case.
5 http://en.wikipedia.org/K-d_tree

16

http://en.wikipedia.org/K-d_tree

3.5. Nearest neighbor search

The actual lookup consists of moving down the tree by comparing the split dimension
of each node with that of the query point, saving the leaf node as current best, and then
moving the tree up again while looking for an even closer point to a in a hypersphere
around a with radius equal to the current nearest distance. Since the number of additional
points to consider in this branch and bound procedure is constant, the overall lookup time
is still bounded by the height of the tree, and thus in O(log(NB))

3.5.3. Distance transform

(a) Euclidean distances to the
border

Mitra et al. / Registration of Point Cloud Data

we perform an on-demand computation of Equation 13. For
this method we first need to compute the normal footpoint
of x to P. As an approximation, we treat p, the closest point
to x in P, as the normal footpoint. This point is found using
an approximate nearest neighbor data structure [AMN⇤98].
Figure 1 shows the scenario in 2D. When the P is a sparse
sampling of ΦP, we can use the underlying moving least
square (MLS) surface to get a better approximation for the
normal footpoint [AK04]. We further need to evaluate local
curvatures at points of P in order to use Equation 13. These
quantities are computed in the preprocessing step of our al-
gorithm.

At each point of a given PCD, we first determine the prin-
cipal frame using a local covariance analysis as detailed in
[CP03, MNG04]. If the the underlying surface ΦP is reg-
ular, at each of point p of P, a local parametrization ex-
ists. In the principal frame at p, we estimate the local sur-
face by least square fitting a quadratic function of the form
ax2 + bxy+ cy2 + dx+ ey to the neighboring points in P.
Once we estimate the coefficients a through e, we can use
facts from differential geometry to get the Gaussian curva-
ture K and the mean curvature H using

K =
4ac�b2

(1+d2+ e2)2
(14)

H =
a(1+ e2)�bde+ c(1+d2)

(1+d2+ e2)2
.

Finally we evalute the principal radii of curvature ρi as
1/(H±

p
H2�K).

The correctness of these estimates depends on the sam-
pling density of the given PCD and on the measurement
noise. Further, the neighborhood size used for the least
square fits can be adapted to the local shape [MNG04]. In
low noise scenarios, when the local estimates of the differ-
ential properties can be reliably computed, the approximants
F+ given by this method are good.

4.2. Quadratic Approximants using d2Tree

Our second method for computing approximate quadratic
approximants involves least square fitting of quadratic
patches to a sampled squared distance function. For a given
PCD, these quadratic patches are pre-computed and stored
in a special data structure called the d2Tree[LPZ03]. Given
any point x, in this method we do a point location in the cells
of the d2Tree and return the quadratic approximant stored in
the corresponding cell.

Simply put, the d2Tree is an octree-like (quad-tree in 2D)
data structure, where each cell stores a quadratic fit to the
squared distance function, correct to some maximum error
threshold. The approximants are stored in the form as given
in Equation 7 (Equation 3 in 2D). Details of a top-down con-
struction of d2Tree can be found in [LPZ03]. Here we de-

Figure 2: d2Tree can be used in 2D (left) and in 3D (right) to
store quadratic approximants of the squared distance fields
correct to some error threshold. The maximum number of
levels and the error threshold, which are parameters used
during the construction of this quad-tree like data-structure,
determine the size of the cells. In the 2D case, we overlay
the Voronoi diagram of the PCD on top of the d2Tree, to
illustrate that small cells are created around the medial axis.

scribe a bottom-up construction, which is computationally
more efficient.

As a first step, a sampled squared distance field is build for
an input PCD by sweeping the space starting from the PCD P
and propagating the squared distance information [LPZ03].
Depending on the number of levels, which is an input to the
algorithm, the space is divided into smallest allowable cells
(see Figure 2). In each cell, a quadric patch, that best fits the
sampled squared distance field, is computed. The fitting er-
ror and the matrices used to compute the coefficients of the
fit are saved in each cell. At the next level, the neighboring
cells (four in 2D and eight in 3D) are merged to form a larger
quadric patch, only if the resulting fitting error is below the
given error threshold. The larger quadric patches can be ef-
ficiently fitted by re-using the matrices stored in the smaller
cells. The quadratic matrix stored in any cell is made positive
semi-definite during construction. The maximum number of
levels of the tree and the error threshold are the required pa-
rameters for the construction of this data structure. Notice
that there exists a tradeoff between the size of the cells and
the accuracy of the quadratic approximants.

Unlike the on-demand method for computing quadratic
approximants described before, the d2Tree approach does
not need estimates of the local curvature or any nearest
neighbor structure. Quadratic approximants computed by
d2Tree, implicitly learn the local curvature information by
fitting quadrics to the sampled squared distance field. We
find this method to be robust to noisy or under-sampled PCD.
Given a query point x, computing F+(x) simply involves
a point location in this d2Tree structure, and does not re-
quire any explicit correspondence between points of the in-
put PCDs.

c� The Eurographics Association 2004.

(b) Indices of the closest point stored in a quadtree(2D) or
octree(3D) [34]

Figure 3.5.: distance transform

Nearest neighbor search can also be done in O(1), given one first precomputes a vol-
umetric bounding box of the point set B, which stores the index of the closest point for
every voxel, through what is known as the distance transform. While this method requires a
large amount of preprocessing and is certainly not space efficient, since one has to store the
empty space around the point cloud just to fill it with indices, it provides very fast lookup
times. This method was introduced in [13]. The memory efficiency issue can be reduced
by the use of adaptive grid structures such as octrees [34]. The distance transform is also
the basis for the Truncated Signed Distance Function (TSDF), which inspired a whole class
of successful volumetric reconstruction algorithms like KinectFusion[35].

3.5.4. Projection-based matching

Another way to do the lookup in O(1) is via an approximate nearest neighbor search,
given the two involved point clouds are organized, meaning that they are acquired as
range images from depth cameras. This is called projection-based matching and requires
no preprocessing. It works by projecting the query point a into the image plane of the
camera that acquired the point set B, giving some not necessarily integer pixel coordinates
(u, v), and then choosing the point b which corresponds to the pixel b(u, v)c. Note that this
method does not return the exact closest point and also sometimes does not return a point
at all since some pixels in the depth image are invalid. Due to the constant time lookup, the
overall ICP algorithm will still run much faster, even though the correspondences obtained
via this method do not offer the best convergence per iteration as stated in [38].

17

3. Background

3.6. Iterative Closest Points

The optimal registration of point clouds is an important problem for which an extensive
amount of research was done. Given a set of point to point correspondences {pi → qi}N1 ,
the goal is to find a rigid body transformation g that aligns pi to qi, meaning that the
distances g(pi) − qi are as small as possible. Formally, the optimal alignment is given by
minimizing an error function of the following form:

E(g) =
N∑

i=1

l(d(g(pi), qi)) ∗ w(g(pi), qi) (3.13)

g : Rd → Rd, g ∈ SE(3)

d : Rd × Rd → Rd, distance function (3.14)

l : Rd → R, loss function (3.15)

w : Rd × Rd → R, weight function (3.16)

In general, the set of point correspondences {pi → qi}N1 is not already given, but needs
to be obtained before minimizing (3.13). The overall problem of point cloud registra-
tion is thus to align a data A = {ai} = {a1, a2, ..., aNA}, ai ∈ R3 to a model B = {bi} =
{b1, b2, ..., bNB}, bi ∈ R3 point cloud, without knowing any correspondences between their
points beforehand. The key idea of the ICP algorithm, introduced by [4, 5, 50], is to use
the closest point correspondences (pi ∈ A, qi ∈ B) between data and model point clouds.
It can be summarized in two steps, which are iteratively repeated until convergence to the
desired solution is achieved [42]:

1. compute correspondences {pi → qi}N1 between two scans, i.e. for each data point ai,
transformed by the current estimate g, pi = g(ai), find its closest model point qi = bj .

2. update the current transformation estimate g so that it minimizes an error metric
defined on these correspondences, i.e. the distance between corresponding points.

Since both steps must reduce the error, convergence to a local minimum is guaranteed [13].
Furthermore, an easy termination criterion is met if the set of correspondences in 1. does
not change. This means the previous transformation in 2. brought the energy to a local
minimum, so the current transformation would be the identity.

18

3.6. Iterative Closest Points

3.6.1. Taxonomy

Over the years, there have been various modifications to the original algorithm. A taxon-
omy of the different variants is given by [38]:

1. Selection of some set of points in one or both input point sets.

2. Matching these points to compatible points in the other set.

3. Weighting the corresponding pairs appropriately.

4. Rejecting certain pairs as outliers.

5. Error metric definition on the set of inliers.

6. Minimization of the error metric.

Selection

Selection means to consider only a subset of the model and data points, which may be ben-
eficial for the further steps. For instance one may filter out outliers stemming from noise
in the input data or do a random or uniform subsampling to reduce computational com-
plexity. In our approach we will use uniform subsampling together with outlier rejection
based on small, isolated point sets.

Matching

Matching amounts to actually compute the correspondences {pi → qi}N1 between the two
point clouds A = {ai} = {a1, a2, ..., aNA}, ai ∈ R3 and B = {bi} = {b1, b2, ..., bNB}, bi ∈ R3.
For each pi = g(ai), ai ∈ A, this amounts to a nearest neighbor search (section 3.5) in B,
so NA of these in total. The choice of which search method one uses heavily depends on
the application, speed and accuracy requirements as well as on the format of the point
clouds. In the ICP part of KinectFusion [35], the authors used projection-based matching
(subsection 3.5.4), while in [13], the distance transform was used.

Weighting

Correspondences may be weighted according to their compatibility, which is done by mul-
tiplying the loss (3.15) introduced by each correspondence with a factor w (3.16) that de-
pends on p and q. For range images, this can be based on distance w = 1 − d(p,q)

dmax
, normal

direction w = np ∗ nq or curvature w = e−(cp−cq)2 [26]. For the last two measures, it is nec-
essary to compute additional features for each point p and q like normals (subsection 3.4.1)
and curvature (subsection 3.4.2). Since [38] concluded that the the effect of weighting on
convergence rate is small and highly data-dependent, we just use a constant weight of
w = 1 to stay as general as possible.

19

3. Background

Rejecting

The purpose of rejecting correspondences is to eliminate outliers, which may have a huge
effect on least-squares optimization [38], as they disturb the assumption of Gaussian dis-
tributed data samples. A small amount of outliers may drag the final result away from
the optimal solution. A simple rejection strategy is to prune correspondences whose point
pair distances (in the sense of their L2 norm) are above a certain rejection threshold dmax.
The choice of dmax represents a trade-off between convergence and accuracy. A low value
results in bad convergence (the algorithm becomes short sighted); while a large value causes
incorrect correspondences to pull the final alignment away from the correct value [42].

dmax (3.17)
rejection threshold

There are more sophisticated methods like rejecting the worst n percent of pairs, but for
our purposes the threshold version works fine. Dropping correspondences is the reason
why N < NA in general. Note that rejecting certain pairs is equivalent to setting their
weight to zero w = 0, which is the formulation used in [13, 42]. In that case N = NA.

Error metric

The error metric used, which is a combination of distance (3.14) and loss function (3.15),
is the part in which the different methods differ the most, since the specific choice deter-
mines what is actually minimized and how minimization can be carried out.

Choices for loss functions are [16][p. 619]:

l(r) = r2 squared loss (3.18)
l(r) = |r| absolute loss (3.19)

lδ(r) =

{
r2 if |r| < δ

|r|2δ − δ2 else
Huber loss (3.20)

Choices for distance functions are (note that p∗ = g(p)):

dp−p(p
∗, q) = p∗ − q point to point distance (3.21)

dp−pl(p
∗, q) = (p∗ − q) · nq point to plane distance (3.22)

dpl−pl(p
∗, q) = f(p∗, q, n∗p, nq) plane to plane distance (3.23)

Minimization

Certain combinations of above functions have closed form solutions, either exact or ap-
proximate ones. Other combinations can only be solved iteratively. In the following, we
will review the most prominent ones. Their energy functionals are obtained from (3.13). In
all of them, the weighting function is set to w = 1 and the the correspondences {pi → qi}N1
are already retrieved by ordering the matches from ANA

1 and BNB
1 and rejecting certain

pairs with d > dmax, which means that N < NA in general.

20

3.6. Iterative Closest Points

3.6.2. Point to point

pointOtoOpoint pointOtoOplane

Eurographics 2012, Cagliari, Italy

Point-to-Plane Error Metric

19

Figure 3.6.: point to point distance

The combination of (3.18) with (3.21) is the original and also most cited version of ICP,
introduced by Besl and McKay [4], maybe due to the fact of the extensive examples and
performance analysis of the basic algorithm. Almost simultaneously, Zhang [50] describes
the same variant of ICP but adds a robust method for outlier rejection as in section 3.6.1, ei-
ther based on a maximum distance threshold dmax which he obtains adaptively in a robust
manner by analyzing distance statistics, or based on normal compatibility of the points,
similar to what we discussed in section 3.6.1, where he prunes correspondences whose
normal’s angular difference is above the maximum angle of rotation expected between
two frames. The written out form of this energy is:

E =
N∑

i=1

||Rpi + t− qi||2 (3.24)
point to point

At least 4 different closed form solutions for the minimization of this least squares problem
exist, which are summarized in [9]. The first one is the Singular Value Decomposition
(SVD) based approach of Arun et al. [2], which is usually always used in combination
with Umeyama [48] to fix the original failure case of reflections. The second one of Horn
[21] employs unit quaternions, while the third one [22], also from the same author, uses
orthonormal matrices. The fourth approach of Walker et al. [49] uses dual unit quaternions.

While [4] uses the method based on unit quaternions [21] which automatically elimi-
nates reflections (|R| = −1), we use the SVD approach [2], in which we just flip the last
column of R if |R| = −1 as in [48], to ensure it is a rotation matrix and not a reflection. The
details of the actual implementation can be found in appendix A.2.

Recently, there has also been an extension to the SVD based approach (Arun et al. [2],
Umeyama [48]) to align two differently scaled point clouds in Zinßer et al. [51].

21

3. Background

3.6.3. Point to plane

pointOtoOpoint pointOtoOplane

Eurographics 2012, Cagliari, Italy

Point-to-Plane Error Metric

19

Technical Report TR04-004, Department of Computer Science, University of North Carolina at Chapel Hill, February 2004.

1

Linear Least-Squares Optimization for
Point-to-Plane ICP Surface Registration

Kok-Lim Low

Department of Computer Science
University of North Carolina at Chapel Hill

Email: lowk@cs.unc.edu

ABSTRACT
The Iterative Closest Point (ICP) algorithm that uses the point-to-
plane error metric has been shown to converge much faster than
one that uses the point-to-point error metric. At each iteration of
the ICP algorithm, the change of relative pose that gives the
minimal point-to-plane error is usually solved using standard
nonlinear least-squares methods, which are often very slow.
Fortunately, when the relative orientation between the two input
surfaces is small, we can approximate the nonlinear optimization
problem with a linear least-squares one that can be solved more
efficiently. We detail the derivation of a linear system whose
least-squares solution is a good approximation to that obtained
from a nonlinear optimization.

1 INTRODUCTION
3D shape alignment is an important part of many applications. It
is used for object recognition in which newly acquired shapes in
the environment are fitted to model shapes in the database. For
reverse engineering and building real-world models for virtual
reality, it is used to align multiple partial range scans to form
models that are more complete. For autonomous range
acquisition, 3D registration is used to accurately localize the range
scanner, and to align data from multiple scans for view-planning
computation.

Since its introduction by Besl and McKay [Besl92], the ICP
(Iterative Closest Point) algorithm has become the most widely
used method for aligning three-dimensional shapes (a similar
algorithm was also introduced by Chen and Medioni [Chen92]).
Rusinkiewicz and Levoy [Rusinkiewicz01] provide a recent
survey of the many ICP variants based on the original ICP
concept.

In the ICP algorithm described by Besl and McKay [Besl92], each
point in one data set is paired with the closest point in the other
data set to form correspondence pairs. Then a point-to-point error
metric is used in which the sum of the squared distance between
points in each correspondence pair is minimized. The process is
iterated until the error becomes smaller than a threshold or it stops
changing. On the other hand, Chen and Medioni [Chen92] used a
point-to-plane error metric in which the object of minimization is
the sum of the squared distance between a point and the tangent
plane at its correspondence point. Unlike the point-to-point
metric, which has a closed-form solution, the point-to-plane
metric is usually solved using standard nonlinear least squares
methods, such as the Levenberg-Marquardt method [Press92].
Although each iteration of the point-to-plane ICP algorithm is
generally slower than the point-to-point version, researchers have
observed significantly better convergence rates in the former
[Rusinkiewicz01]. A more theoretical explanation of the
convergence of the point-to-plane metric is described by Pottmann
et al [Pottmann02].

In [Rusinkiewicz01], it was suggested that when the relative
orientation (rotation) between the two input surfaces is small, one
can approximate the nonlinear least-squares optimization problem
with a linear one, so as to speed up the computation. This
approximation is simply done by replacing sin θ by θ and cos θ by
1 in the rotation matrix.

In this technical report, we describe in detail the derivation of a
system of linear equations to approximate the original nonlinear
system, and demonstrate how the least-squares solution to the
linear system can be obtained using SVD (singular value
decomposition). A 3D rigid-body transformation matrix is then
constructed from the linear least-squares solution.

2 POINT-TO-PLANE ICP ALGORITHM
Given a source surface and a destination surface, each iteration of
the ICP algorithm first establishes a set of pair-correspondences
between points in the source surface and points in the destination
surfaces. For example, for each point on the source surface, the
nearest point on the destination surface is chosen as its
correspondence [Besl92] (see [Rusinkiewicz01] for other
approaches to find point correspondences). The output of an ICP
iteration is a 3D rigid-body transformation M that transforms the
source points such that the total error between the corresponding
points, under a certain chosen error metric, is minimal.

When the point-to-plane error metric is used, the object of
minimization is the sum of the squared distance between each
source point and the tangent plane at its corresponding destination
point (see Figure 1). More specifically, if si = (six, siy, siz, 1)T is a
source point, di = (dix, diy, diz, 1)T is the corresponding destination
point, and ni = (nix, niy, niz, 0)T is the unit normal vector at di, then
the goal of each ICP iteration is to find Mopt such that

()()∑ •−⋅=
i

iii
2

opt minarg ndsMM M

(1)

where M and Mopt are 4×4 3D rigid-body transformation matrices.

 Figure 1: Point-to-plane error between two surfaces.

tangent
plane

s1
source
point

destination
point

d1

n1
unit

normal

s2

d2

n2
s3

d3

n3

destination
surface

source
surface

l1

l2
l3

Figure 3.7.: point to plane distance, right one from [29]

The combination of (3.18) with (3.22) was introduced by Chen and Medioni [5], who
considered the more specific problem of aligning range data for object modeling, which
is thus very relevant for our work. They take advantage of the fact that most range data
is locally planar and can thus be supplied with surface normals nq for each of the model
points q:

E =
N∑

i=1

||(Rpi + t− qi) · nqi ||2 (3.25)
point to plane

What is now minimized is the sum of distances of the data points to the tangent planes of
the model points. This lets flat regions slide along each other, which turns out to be very
advantageous for the alignment of our subsampled range scans: The location of points
in two frames, describing a similar surface, may be different, but the actual surface they
describe locally through their normals is still the same.

An approximate closed form solution can be obtained by locally linearizing the rotation
matrix R, as we saw in subsection 3.3.4. Due to the iterative nature of ICP, the errors in-
troduced by this linearization become small in late iterations, when rotations are expected
to be small. The overdetermined set of equations of the approximation is a standard linear
least-squares problem of the form Ax = b, which can be solved using the pseudo-inverse
x = A†b computed via SVD as in Low [29], or by Cholesky decomposition of the positive
semidefinite matrix C, obtained either from the normal equations Cx = d⇔ ATAx = AT b
or, equivalently, by partial differentiation of the approximation as in Gelfand et al. [14],
who additionally interpret C as a covariance matrix that can be used to describe the stabil-
ity of this algorithm for different kinds of surfaces. The details of our actual implementa-
tion can be found in appendix A.3.

22

3.6. Iterative Closest Points

3.6.4. Generalized ICP

Fig. 1. illustration of plane-to-plane

a sampled 2-manifold in 3-space. Since real-world surfaces
are at least piece-wise differentiable, we can assume that our
dataset is locally planar. Furthermore, since we are sampling
the manifold from two different perspectives, we will not in
general sample the exact same point (i.e. the correspondence
will never be exact). In essence, every measured point only
provides a constraint along its surface normal. To model this
structure, we consider each sampled point to be distributed
with high covariance along its local plane, and very low
covariance in the surface normal direction. In the case of a
point with e1 as its surface normal, the covariance matrix
becomes 0

@
✏ 0 0
0 1 0
0 0 1

1
A

where ✏ is a small constant representing covariance along the
normal. This corresponds to knowing the position along the
normal with very high confidence, but being unsure about its
location in the plane. We model both ai and bi as being drawn
from this sort of distribution.

Explicitly, given µi and ⌫i – the respective normal vectors at
bi and ai – CB

i and CA
i are computed by rotating the above

covariance matrix so that the ✏ term represents uncertainty
along the surface normal. Letting Rx denote one of the
rotations which transform the basis vector e1 ! x, set

CB
i = Rµi

·

0
@

✏ 0 0
0 1 0
0 0 1

1
A · RT

µi

CA
i = R⌫i ·

0
@

✏ 0 0
0 1 0
0 0 1

1
A · RT

⌫i

The transformation, T, is then computed via (2).
Fig. 1 provides an illustration of the effect of the algorithm

in an extreme situation. In this case all of the points along the
vertical section of the green scan are incorrectly associated
with a single point in the red scan. Because the surface
orientations are inconsistent, plane-to-plane will automatically
discount these matches: the final summed covariance matrix
of each correspondence will be isotropic and will form a very
small contribution to the objective function relative to the thin
and sharply defined correspondence covariance matrices. An
alternative view of this behavior is as a soft constraint for each
correspondence. The inconsistent matches allow the red scan-
point to move along the x-axis while the green scan-points are

free to move along the y-axis. The incorrect correspondences
thus form very weak and uninformative constraints for the
overall alignment.

Computing the surface covariance matrices requires a sur-
face normal associated with every point in both scans. There
are many techniques for recovering surface normals from point
clouds, and the accuracy of the normals naturally plays an
important role in the performance of the algorithm. In our
implementation, we used PCA on the covariance matrix of the
20 closest points to each scan point. In this case the eigen-
vector associated with the smallest eigenvalue corresponds
with the surface normal. This method is used to compute
the normals for both point-to-plane and Generalized-ICP. For
Generalized-ICP, the rotation matrices are constructed so that
the ✏ component of the variance lines up with the surface
normal.1

IV. RESULTS

We compare all three algorithms to test performance of the
proposed technique. Although efficient closed form solutions
exist for T in standard ICP, we implemented the minimization
with conjugate gradients to simplify comparison. Performance
is analyzed in terms of convergence to the correct solution after
a known offset is introduced between the two scans. We limit
our tests to a maximum of 250 iterations for standard ICP, and
50 iterations for the other two algorithms since convergence
was typically achieved before this point (if at all).

Both simulated (Fig. 3) and real (Fig. 4) data was used in or-
der to demonstrate both theoretical and practical performance.
The simulated data set also allowed tests to be performed on
a wider range of environments with absolutely known ground
truth. The outdoor simulated environment differs from the
collected data primarily in the amount of occlusion presented,
and in the more hilly features of the ground plane. The real-
world outdoor tests also demonstrate performance with more
detailed features and more representative measurement noise.

Simulated data was generated by ray-tracing a SICK scanner
mounted on a rotating joint. Two 3D environments were
created to test performance against absolute ground truth both
in the indoor (Fig. 2(a)) and an outdoor (Fig. 2(b)) scenario.
The indoor environment was based on an office hallway,
while the outdoor setting reflects a typical landscape around a
building. In both cases, we simulated a laser-scanner equipped
robot traveling along a trajectory and taking measurements at
fixed points along the path. Gaussian noise was added to make
the tests more realistic.

Tests were also performed on real data from the logs of
an instrumented car. The logs included data recorded by a
roof-mounted Velodyne range finder as the car made a loop
through a suburban environment and were annotated with GPS
and IMU data. This made it possible to apply a pairwise
constraint-based SLAM technique to generate ground truth

1In our implementation we compute these transformations by considering
the eigen decomposition of the empirical covariance of the 20 closest points,
⌃̂ = UDUT . We then use U in place of the rotation matrix (in effect
replacing D with diag(✏, 1, 1) to get the final surface-aligned matrix).

Figure 3.8.: plane to plane distance [42]

The distance metric (3.23) is the symmetric extension of (3.22), a function f(p∗, q, n∗p, nq)
of both points and both normals. The idea is to compute distances between tangent planes.
However, this is not as trivial as one might think, because the distance between two planes
in R3 is zero, unless they have exactly the same normal direction. To cope with this issue,
the quite recent work of Segal et al. [42] introduced Generalized ICP (GICP), which puts
the whole problem onto a probabilistic framework that additionally uses the covariance
matrices Cp, Cq of model and data point, respectively. The idea is that we know the posi-
tion of a point along its normal with high confidence ε < 1, while we are unsure about its
location in the plane. The covariance matrices Cp,q are obtained by rotating this confidence
estimate into the coordinate system defined by the normals via

Cp,q = Rnp,nq · diag(ε, 1, 1) ·RTnp,nq

where Rx denotes a rotation matrix that aligns the first unit axis with x: Rx · [1, 0, 0]T = x.
The complete function to minimize is given as:

E =
N∑

i=1

dp−p(Tp, q)
T (Cpi + TCqiT

T)−1dp−p(Tp, q)
T (3.26)

plane to plane

where T is the matrix form of the transformation g. This formula resembles the Maha-
lanobis distance, only the square root is missing. There is no closed form solution for the
minimization of this energy, the authors used the iterative conjugate gradients.

GICP is considered as a unifying ICP variant, because it can also model the other two
distance functions. Point to point is retrieved via

Cp = 0, Cq = I (3.27)

and point to plane via
Cp = 0, Cq = P−1 (3.28)

where Pi is the projection onto the span of the surface normal at qi.

23

3. Background

3.6.5. Levenberg-Marquardt ICP

Levenberg-Marquardt ICP (LM-ICP), introduced by Fitzgibbon [13], abandons the closed-
form solutions for the inner loop of ICP and instead employs a standard iterative non-
linear optimizer, the Levenberg-Marquardt (LM) algorithm. At no significant loss of speed,
robust loss functions may now be easily incorporated, but also, more importantly, the min-
imization can be generalized to the multiview setting. Because the original paper deals
with the two-frame case exclusively, we will review it here. The multiview extension will
be given in 4.4. The basic idea is to minimize (3.13) via Non-linear Least Squares (NLS) op-
timization. The LM algorithm is an optimization procedure that is best suited to functions
that are expressed as a sum of squared residuals, but it also works for robust loss func-
tions as long as they are smooth [13]. Note that in the inner ICP loop the correspondences
{pi → qi} are fixed, the only thing that changes is the transformation g. This means that
(3.13) depends only on g. Using the squared loss, it can be rewritten as:

E(g) =
N∑

i=1

||d(g(pi), qi)||2 (3.29)

Lets introduce the vector error function ei = d(g(pi), qi) ∈ R3, which gives the distance
vector of each correspondence, where the data point is transformed by the current estimate
g. Rewriting the squared L2 vector norm ||.||2 using the dot product, the above can be
rewritten as

E(g) =
N∑

i=1

eTi ei ⇔ eT e (3.30)

The right side is obtained by stacking all of the N ei’s into e (3.32), the vector of residu-
als [13]. The LM algorithm combines gradient descent and Gauss-Newton approaches to
function minimization. The goal at each iteration k is to choose an update x = ∆g to the
current estimate gk, so that the new estimate gk+1 = gk+x reduces the errorE(g). The idea
is to approximate the vector error functions ei by their first order Taylor series expansion:

ei(g + x) ≈ ei(g) +∇ei(g)x = ei + Jix (3.31)

Here, Ji = ∂ei
∂g = ∇ei(g) ∈ R3×p is the Jacobian of ei, computed in g, where p is the number

of parameters by which g is parameterized (6 at a minimum, since g has 6DoF). Similarly
to stacking the error vectors ei into e, we can stack the Jacobians Ji into J = ∂e

∂g = ∇e(g) ∈
R3N×p

e =



ei
...
eN




3N×1

(3.32)

J =



Ji
...
JN




3N×p

(3.33)

24

3.6. Iterative Closest Points

With the approximation (3.31), the sum of squared residuals (3.30) becomes:

E(g + x) = e(g + x)T e(g + x)

≈ (e+ Jx)T (e+ Jx)

= eT e+ eTJx+ (Jx)T e+ (Jx)T (Jx)

= eT + 2xTJT e+ xTJTJx

At each iteration, the task is to find an update step x which will minimize E(g + x). Dif-
ferentiating the above expression with respect to x and equate with zero gives:

∇xE(g + x) = 2JT e︸ ︷︷ ︸
b

+ 2JTJ︸ ︷︷ ︸
H

x = 0 (3.34)

This is an expression involving, b the gradient, and H , the Gauss-Newton approximation
to the Hessian. The useful property of this approximation of the Hessian is that it only
requires first order derivatives, not second order ones like the true Hessian. Solving the
linear system Hx = −b for x yields the Gauss-Newton update

x = −(JTJ)−1JT e (3.35)
Gauss-Newton step

Whether this step actually reduces the error E(g + x) < E(g) depends on the accuracy of
the Taylor series expansion at g and the validity of the Gauss-Newton approximation. This
is usually the case when near the minimum. On the other hand, a simple gradient descent
approach with

x = −λ−1JT e (3.36)
gradient descent step

guarantees to reduce E, provided that λ is sufficiently large (and thus the step size λ−1

small), but its convergence near the minimum is very slow. The LM algorithm combines
both approaches in quite a simple way:

x = −(JTJ + λI)−1JT e (3.37)
Levenberg step

Large λ correspond to small, safe gradient descent steps, which are sure to decrease the er-
ror, while small λ allow fast convergence near the minimum, but might otherwise increase
the error. This update step can also be obtained by minimizing the damped version, called
the augmented normal equations

(H + λI)x = −b (3.38)

instead of Hx = −b [28]. The scaled identity matrix summand λI adds like a regularizer,
meaning that even if H is close to singular, Cholesky decomposition of H + λI to solve
the above would still work. The art of a good LM implementation is to tune λ after each
iteration to allow for fast convergence: If the new error is lower than the previous one, the

25

3. Background

update x is accepted and λ is decreased. If the new error is larger than the previous one, the
update x is discarded and λ is increased. Our Matlab implementation is given in appendix
A.4. Marquardt suggested to solve the augmented normal equations H + λdiag(H)x = b,
which scales the step size in each dimension according to the difference to the minimum,
useful for faster minimization of long, narrow valleys. However, we found this version to
be less stable.

Algorithm 1: LM-ICP

Input: {pi → qi} point correspondences
Output: g rigid body transformation

1 λ← λ0 // initialize lambda, see [37][p.684]
2 g ← g0 // usually identity transform
3 while not converged i.e. λ is small do
4 e← e(g) // residual vector
5 J ← ∇e(g) // Jacobian
6 x← −(JTJ + λI)−1JT e // Levenberg step
7 if ||e(g + x)||2 < ||e(g)||2 then // error reduced
8 g ← g + x
9 increase λ

10 else
11 decrease λ

12 return g

26

4. Approach

Algorithm 2: 3D OBJECT RECONSTRUCTION USING POINT PAIR FEATURES

Input: D = {d1, d2, .., dN} range images
Output: P = {P1, P2, ...PN} registered poses
Params: ddist, nangle, nFrames, knn

1 C ← {C1, C2, .., CN} ← list() // Point clouds
2 P ← {P1, P2, .., PN} ← list() // Camera poses
3 for i← 1 to N do
4 Ci ← Preprocessing(di, ddist) // 4.1
5 Fi ← Learning(Ci, ddist, nangle) // algorithm 3, 4.2.2
6 Ki ← kdTreeBuild(Ci) // 3.5.2

7 for i← 2 to N do // pairwise alignment and refinement
8 vmax ← −1
9 k ← −1

10 for j ← i− 1 to max(1, i− nFrames) do
11 Q ←Matching(Cj , Ci, Fj , Fi, nangle) // algorithm 4, 4.2.3
12 (Pest, vsum)← PoseClusteringAndAveraging(Q) // algorithm 5, 4.2.4
13 if vsum > vmax then
14 vmax ← vsum
15 k ← j
16 Pk→i ← Pest // update of best matching frame

17 Pk→i ← pairWiseRefinement(Ci, Ck, Pk→i,Kk, ddist) // algorithm 6, 4.3
18 Pi ← Pk ∗ Pk→i // need absolute pose for multiview refinement

19 P ← multiviewRefinement(C,P, ddist, knn) // algorithm 7, 4.4
20 return P

We implemented each step of the 3D modeling process (fig. 1.1), starting with multi-
ple range images and ending with integrated views. All code is available in our github
repository1. An overview of our approach can be given by splitting it up into its major
components, which we describe in their respective sections:

4.1 Preprocessing line 4
4.2 Pairwise coarse alignment
4.2.2 Learning line 5
4.2.3 Matching line 11
4.2.4 Pose clustering and averaging line 12

4.3 Pairwise refinement line 17
4.4 Multiview refinement line 19

1 https://github.com/adrelino/ppf-reconstruction

27

https://github.com/adrelino/ppf-reconstruction

4. Approach

A novelty of our method versus previous methods is that we don’t just do a frame by frame
alignment, but instead we find the best matching frame from the last nFrames frames and
align to that one. This is possible because our matching algorithm actually outputs a pose
together with a score, which is the number of votes vsum that it received in our voting
process. In turn, this means that the concept of a trajectory generalizes to that of a tree in a
pose graph. Before we run the final multiview refinement stage, the relative poses in this
tree are converted to absolute poses in a pose graph.

4.1. Preprocessing

4.1.1. Backprojection

The first step is to transform our range images into point clouds by inverting the camera
projection in the pinhole camera model using (3.2). For this, we just loop over all pixels in
the range image d, and for each valid pixel with Z = d(u, v) > 0 (0 means no measurement
which often happens at object boundaries) we add its back-projected 3D point to a list P .
We call the list P = {pi} = {p1, p2, ..., pNP}, pi ∈ R3 a point cloud.

4.1.2. Segmentation

Since we just want to reconstruct the object of interest and not a whole room, we need to
do a two-region segmentation into foreground and background. Because our real world
models were all acquired while standing on a table, we use this knowledge to mask out all
objects not standing on the table as well as the table itself. We employ RANdom SAmple
Consensus (RANSAC) to find the algebraic model parameters ax+ by + cz + d = 0 of the
largest plane in the point cloud which we assume to be the table’s surface:

1. randomly select 3 linearly independent points pi, pj , pk ∈ P

2. these span a plane, calculate its parameters ax+ by + cz + d = 0

3. calculate the distances d of all points p ∈ P to the plane (a, b, c, d)

4. add p ∈ P for which |d| ≤ |dt| holds to the consensus set, where dt is a threshold to
set by the user.

The algorithm terminates whenever the size of the consensus set is sufficiently large.
Having the plane, we can now construct a polygonal prism with height h, specified by the
user, on top of it, for which we know that the object of interest must lie inside it. We now
just mask out all the 3D points whose coordinates lie outside the prism. For convenience,
we can now project the segmented 3D object points into the 2D image plane using (3.1) and
save the resulting binary mask alongside the depth images. This is useful so we don’t have
to recompute the segmentation over and over again if we run the algorithm multiple times.
For the synthetic sequences generated by Blender2 the segmentation is already given, since
background pixels are already set to 0 automatically.

2 http://www.blender.org/

28

http://www.blender.org/

4.1. Preprocessing

4.1.3. Downsampling

Our pose estimation algorithm [8] requires the point cloud to be regularly subsampled,
so that all points have a minimum distance of ddist (4.9), the distance quantization step.
This is important, since point pairs which are too close together would give badly con-
ditioned pose estimates. Additionally, downsampling reduces the number of points and
thus the computational complexity of our learning (subsection 4.2.2) and matching (sub-
section 4.2.3) phase, since the number of point pair features is quadratic in the number of
points. One of the simplest methods to do this is to employ a grid based subsampling tech-
nique. In 3D, grid cells are called voxels. Following [8][Results Section], we just take ddist
as our voxel size to fulfill the above criteria. Instead of the conventional three dimensional
array, we use a hash map h = {(key, bucket)} to represent a regular volume of voxels, so
we don’t have to store any empty cells and are independent of the actual location of the
object in front of the camera. For each point in the original point cloud we calculate its key
via

k = (b px
ddist
c, b py

ddist
c, b pz

ddist
c)

and insert it into its corresponding bucket in the hash map. Now all of our original points
are clustered into buckets corresponding to the voxels they belong to. All in all we just
performed a clustering of our original cloud into multiple point sets where the Manhattan
distance of a point to the voxel center was used as a metric.

The new, subsampled point cloud can now be easily obtained by taking the centroid of
the point sets from each bucket. However, we wait with this step and keep the buckets for
now since they are used in our denoising and normal and curvature estimation algorithms
anyway.

4.1.4. Denoising

We just remove the buckets with less thanmax(3, ptsmin) original points to eliminates spu-
rious, isolated point clusters coming from an imperfect segmentation (subsection 4.1.2) as
well as small stripes at the object boundary where the regular grid was unfavorable to the
actual geometry of the object. Having at least 3 points per bucket is especially important
for the estimation of normals (subsection 4.1.5), since one can imagine that normal esti-
mates with less than 3 points don’t make any sense and are even more robust the more
points one uses.

4.1.5. Normal and curvature estimation

In our method, the downsampling, denoising and normal and curvature estimation algo-
rithms are actually tied together because we use the original points for estimating them.
As we saw in 3.4, surface normals (3.11) and curvature (3.12) can be estimated using prin-
cipal component analysis of point sets. Usually, one uses the neighbors of each point in a
sphere centered at that point as input to this method. We, however, use the original points
that fell into the same voxel to estimate surface normal and curvature of the centroid of
that voxel. This is not as accurate as using a sphere centered at the centroid, but much
faster and works well for our purposes. Our implementation of a combined point set PCA
is given in appendix A.1.

29

4. Approach

4.2. Pairwise coarse alignment

For the initial coarse pairwise alignment between any two overlapping point clouds we
adapt a method known from object recognition in 3D point clouds [8]. An object is de-
tected and simultaneously localized in 6DoF via the accumulation of votes in a parameter
space as in the Generalized Hough Transform [3]. A vote is cast for every correspondence
between two Point Pair Features (PPFs). In the following subsections, we first define the
Point pair feature 4.2.1 before discussing the different parts of the algorithm: Learning
4.2.2, Matching 4.2.3, Pose clustering and averaging 4.2.4.

4.2.1. Point pair feature

Figure 4.1.: A point pair feature PPF of two oriented points. [8]

A point pair feature is a 4D signature of a configuration of two oriented points which
describes their relative position and orientation on the surface of an object. It is depicted
in Figure 4.1. For two points p1, p2 ∈ R3 with normals n1, n2 ∈ R3, we define the point pair
feature F ∈ R4 as:

F = PPF (p1, p2, n1, n2)

= (||d||2,∠ (n1, d) ,∠ (n2, d) ,∠ (n1, n2))

= (F1, F2, F3, F4) ∈ R4

(4.1)

where
d = p2 − p1 (4.2)

is the vector connecting the two points and

∠(v1, v2) = acos

(Ç
v1

||v1||

åT Ç
v2

||v2||

å)
(4.3)

is the angle between two vectors, calculated via the acos of the dot product between the
normalized vectors. So, F1 represents the Euclidean distance between the two surface
points, F2 and F3 are the angles between the normal vectors n1, n2 of the points p1, p2 and
their connecting vector d and F4 is the angle between the two normal vectors n1, n2.

This asymmetric feature effectively encodes geometric constraints of point cloud sur-

30

4.2. Pairwise coarse alignment

faces so that efficient matching between two clouds is possible, especially when they con-
tain rich surface normal variations [6]. It is used both for building the model description
as well as for finding the object of interest in the scene [8].

4.2.2. Learning

Algorithm 3: LEARNING

Input: C = {(p, n)1, · · · , (p, n)N} point cloud with normals
Output: F = {(k, α∗, i)1, · · · , (k, α∗, i)N ·(N−1)} learned cloud
Params: ddist, nangle discretization parameters

1 dangle = 2Π/nangle // (4.10)
2 F ← tupleList(N · (N − 1))
3 l← 1
4 for i← 1 to N do // reference point
5 for j ← 1 to N do // referred point
6 if i 6= j then
7 F ← PPF (pi, pj , ni, nj) // (4.1)
8 F̃ ← quantizePPF (F, ddist, dangle) // (4.4)
9 k ← bitEncode(F̃) // (4.11)

10 α∗ ← planarRotAngle(pi, ni, pj) // Listing 4.2
11 F(l)← (k, α∗, i)
12 l← l + 1

13 F ← sort(F) // sort by k
14 return F

In the learning phase, the N × (N − 1) point pair features F ∈ R4 for every pair of dif-
ferent points (pi, pj), i 6= j in the point cloud {p1, ..., pN} are computed. We denote pi as
the reference point and pj as the referred point. These feature vectors are then grouped to-
gether based on their similarity, which is done by checking for equality of their discretized
versions F̃ ∈ Z4. We discretize by quantizing each component of the feature vector appro-
priately:

F̃ = quantizePPF (F, ddist, dangle)

=

Ç
b F1

ddist
c, b F2

dangle
c, b F3

dangle
c, b F4

dangle
c
å

= (F̃1, F̃2, F̃3, F̃4) ∈ Z4

(4.4)

It is important to set the quantization levels ddist, dangle ∈ R for distances and angles care-
fully. If they are too small compared to the point cloud resolution, we will most likely
not find any correspondences in the voting step due to noise. If they are too big, very
dissimilar features will still be matched together. Thus, a good value for these parameters
is important to allow for small deviations in the normal directions and the point pair dis-
tances, which arise naturally in real data due to the voxel-based subsampling as well as
noise in the input data from the depth sensor. In our experiments, the default values of the

31

4. Approach

parameters are:

diam(M) = 0.15m (4.5)
model diameter

τd = 0.10 (4.6)
distance sampling rate

nangle = 30 (4.7)
number of angle buckets

ndist = 1/τd = 10 (4.8)
number of distance buckets

ddist = τd · diam(M) = 1.5cm (4.9)
distance quantization step

dangle = 2Π/nangle =̂ 12◦ (4.10)
angle quantization step

Note that only the first 3 parameters are free and determine the last 3 derived parame-
ters. It turned out to be sufficient that the user specifies the model diameter diam(M) (4.5)
correctly. The standard values of the other free parameters nangle and τd worked well in
general. In particular, the default angle quantization step of 12 degrees is totally indepen-
dent of the used model and works well for our estimated normal vectors.

In the original implementation [8], the authors insert F̃ into a hash table for later con-
stant time expected lookup. However, the performance of the hash table strongly depends
on the used hash function. We observed that lots of point pair features had the same dis-
cretized versions due to self-similar regions on an object. This means that our hash table
would have only a few non-empty buckets, but the size of these buckets would be large. It
takes a lot of time to construct such a hash table due to the non-locality of the memory ac-
cesses and furthermore, such an unbalanced hash-table does not guarantee constant time
lookup. So, instead of using a hash table, we follow the idea of [41] to store F̃ in a simple
array data structure, and then sort this array. The original idea here is to lookup a feature
via binary search in expected logarithmic time. Since each component of F̃ usually fits in
one byte (nangle, ndist ≤ 255) and because F̃ has 4 components, we can encode it as a 32-bit
unsigned integer k using bitwise concatenation:

F̃1 ∈ [0, ndist] ⊂ [0, 255] = [0, 28 − 1]

F̃2,3,4 ∈ [0, nangle] ⊂ [0, 255] = [0, 28 − 1]

k = bitEncode(F̃) = (F̃1|F̃2 � 8|F̃3 � 16|F̃4 � 24) ∈ [0, 232 − 1] (4.11)

Sorting an array of discretized point pair features is then as simple as sorting an array
of unsigned integers. Additionally to the key k by which we sort the features, we also
store the reference point index i as well as the planar rotation angle α∗ in the array, which
we need to efficiently calculate the 6DoF transformation between two matched point pair
features later on (4.14)

To summarize, a point cloud C is learned and saved as an array F of 3-tuples (k, α∗, i),
sorted by k : k1 ≤ k2 ≤ · · · ≤ kN ·(N−1)

F = {(k, α∗, i)1, · · · , (k, α∗, i)N ·(N−1)} (4.12)

32

4.2. Pairwise coarse alignment

4.2.3. Matching

Algorithm 4: MATCHING

Input: Fm = {(km, αm, im)1, · · · , (km, αm, im)Nm·(Nm−1)} learnt model
Fs = {(ks, αs, is)1, · · · , (ks, αs, is)Ns·(Ns−1)} learnt scene
Cm = {(pm, nm)1, · · · , (pm, nm)Nm}model cloud
Cs = {(ps, ns)1, · · · , (ps, ns)Ns} scene cloud

Params: nangle
Output: P = {(P1, v1), ..., (PNs , vNs)} pose estimates with scores

1 dangle = 2Π/nangle // (4.10)

2 A ← {0Nm×nangle)
1 , · · · , 0Nm×nangle

Ns
} // list of Ns zero matrices

3 a← 1, b← 1
4 while a ≤ Nm(Nm − 1) and b ≤ Ns(Ns − 1) do
5 if kma < ksb then
6 a← a+ 1
7 else if kma > ksb then
8 b← b+ 1
9 else // both keys are equal

10 c← a
11 while kmc == ksb do
12 α← αmc − αsb // (4.14)
13 iα ← b α

dangle
c

14 A(isb)[i
m
c , i

α]← A(isb)[i
m
c , i

α] + 1
15 c← c+ 1

16 a← a+ 1
17 b← b+ 1

18 for is ← 1 to Ns do
19 v ← max(A(is))
20 im, iα ← argmax(A(is))
21 α← (iα + 0.5) ∗ dangle
22 Ts→g ← alignToOriginAndXAxis(psis , n

s
is) // Listing 4.1

23 Tm→g ← alignToOriginAndXAxis(pmim , n
m
im) // Listing 4.1

24 Rx(α)← angleAxis(α, [1, 0, 0]T)
25 Tm→s = T−1

s→gRx(α)Tm→g // (4.13)
26 P(is)← (Tm→s, v)

27 return P

The original paper [8] and follow-up work using point-pair features [41, 6] deal exclu-
sively with object detection. This means all point pair features in the model are learned
once in an offline phase in the beginning and stored in hash tables or in sorted arrays as
seen in the last section. In the online phase, a subset of all possible point pair features in
the scene, whose size is given by the scene sampling rate, which is 1/5 in [8], is usually
considered. Each one of them is looked up in the learnt model description - either via hash

33

4. Approach

lookup or binary search, and if a match is found, a vote for this correspondence is cast.
In our application of object reconstruction, however, we don’t have an offline model

learning phase. Instead, we do a pairwise matching between any two frames which take
on the roles of model as well as scene. This means that we have to calculate all possible
point pair features in each frame anyway since we cannot expect to find correspondences
between randomly selected subsets of them. In this context, we propose to merge the com-
putation of point pair features from learning and matching phases. For each frame, we
calculate all point pair features, store their discretized keys as well as additional informa-
tion in arrays, and sort them as in subsection 4.2.2.

Then for each pair of frames that are to be matched, we employ an algorithm which is
based on the idea of finding the intersection of two sorted arrays. It is implemented as the
outer while loop starting on line 4 in algorithm 4. Let the lengths of the arrays be a and b
respectively. It is important to note that the running time of such an algorithm, which uses
the fact that both arrays are sorted, is in O(a + b), while an algorithm which just assumes
that the first array of length a is sorted is in O(b · log(a)), using b binary searches for the a
sorted elements.

Intermediate coordinate system

Following the original vocabulary, the goal is to coarsely estimate the pose of the object,
which means to align the model {pmi }Nm

1 to the scene {psi}Ns
1 point cloud. Consider we

found a correct match between point pair features on model Fm = PPF (pmi′ , p
m
j′ , n

m
i′ , n

m
j′)

and scene F s = PPF (psi , p
s
j , n

s
i , n

s
j). Because of the discriminative nature of the point pair

feature, this match constrains enough DoF to compute the 6DoF rigid body transformation
to align Fm to F s. Let us first consider only the upper part of Figure 4.2 with the blue
arrows. The alignment of the two reference points pmi′ → psi constrains 3DoF translation and
the alignment of the two reference normal vectors nmi′ → nsi constrains 2DoF rotation. The
remaining 1DoF rotation is the rotation of the transformed referred point pmj′ around nsi to
align it with psj . The whole transformation can be more easily computed with the help of
an intermediate coordinate system, as seen in the lower part of fig. 4.2.

The Transformation Ts→g moves the scene reference point psi into the origin and aligns
its normal nsi with the x-axis. The same is done to the model reference point and normal
via Tm→g. In the intermediate coordinate system, the images of scene and model refer-
ence points psi = pmi′ = [0, 0, 0]T and normals nsi = nmi′ = e1 = [1, 0, 0]T are aligned, but
the images of the referred points psj , p

m
j′ are still misaligned. Due to the definition of the

point pair features, it is clear that for these images, it holds that ||pmj′ ||2 = ||psj ||2 = F1 and
∠(pmj′ , e1) = ∠(psj , e1) = F3 up to the error introduced by discretization. In fact, this means
that the images of the referred points have about the same x coordinates as well as about
the same distance from the x-axis. Thus, they can coarsely be aligned by a rotation of an
angle α around the x-axis, denoted as Rx(α).

The whole 6DoF transformation Tm→s ∈ SE(3) which aligns Fm to F s can now be
obtained via:

Tm→s = T−1
s→gRx(α)Tm→g (4.13)

Note that due to the definition of the point pair feature, the referred normals nsj , n
m
j′ will

be aligned by this transformation automatically, meaning we don’t need to consider them

34

4.2. Pairwise coarse alignment

Figure 4.2.: Aligning two PPFs in the intermediate coordinate system [6]. In the upper
part, p and n denote the original points and normals, while in the lower part,
the same notation is used for their images.

here. Hence they are not even drawn in Figure 4.2.
Since the devil is in the detail, we directly provide our implementation of computing the

transformations T(m/s)→g

1 Isometry3f alignToOriginAndXAxis(Vector3f p, Vector3f n){

2 Vector3f xAxis = Vector3f::UnitX();

3 double angle = acos(xAxis.dot(n));

4 Vector3f axis = (n.cross(xAxis)).normalized();

5 //if n parallel to x axis, cross product is [0,0,0]

6 if(n.y()==0 && n.z()==0) axis=Vector3f::UnitY();

7 Translation3f tra(−p);
8 return Isometry3f(AngleAxisf(angle, axis) * tra);

9 }

Listing 4.1: alignToOriginAndXAxis(p, n): Computes the transformation T(m/s)→g which
aligns p(m/s) with the origin and n(m/s) with the x-Axis. (Eigen/C++)

35

4. Approach

Voting

Unfortunately, the aforementioned assumption of a correct match between two point-pair
features is not always valid, because they only encode geometric constraints locally. In
reality, most objects are at least partly self-similar, so there is a nontrivial amount of locally
similar geometric surfaces which produce the same quantized point pair features. To over-
come this issue a majority voting scheme, similar to the Generalized Hough Transform [3],
is used.

For each scene reference point psi , the transformation Tm→s can be parameterized by its
matched model reference point pmi′ and the rotation angle α around the x-axis. In the sense
of the Generalized Hough Transform, the parameter space for each scene reference point
has dimensions Nm × nangle, where Nm is the number of points in the model point cloud
and nangle the number of angle bins. We use a 2D accumulator matrix Apsi = 0Nm,nangle

to
represent this parameter space.

Since we have more than just 1 scene reference point, but are using all the scene points
as scene reference points as explained before, we actually have a list A = {Aps1 , · · · , AspNs

}
of Ns 2D accumulator matrices. For each of our point pair feature matches, we can obtain
the scene and model reference point indices rs, rm from (4.12). Then, the angle α can be
obtained from (4.13). This angle needs to be discretized αdiscr = α

dangle
. For each match, we

increment A at the correct 3D indices: A(rs)[rm, αdiscr]. In each of the Ns 2D accumulator
spaces, we find the maximum score. The argmax gives us the model reference point index
rmbest, and the quantized alignment angle iαbest corresponding to the optimal local transfor-
mation Tm→s again obtained via (4.13). Since it received the highest number of votes, it is
a quantized candidate for the correct global transformation of the model to the scene point
cloud.

Efficient Voting Loop The computation of α can actually be speeded up by precomput-
ing the two components αm, αs in the learning phase. The component αm is given as the
angle between the vector pmj′ − pmi′ and the upper xy half-plane, and similarly for αs in the
scene point cloud. Then, α is computed by a cheap minus operation:

α = αm − αs (4.14)

The intermediate angles are computed via the function planarRotAngle, for which we pro-
vide our implementation:

1 float planarRotAngle(Vector3f p_i, Vector3f n_i, Vector3f p_j){

2 Isometry3f T_ms_g=alignToOriginAndXAxis(p_i,n_i);

3 Vector3f p_j_image=T_ms_g*p_j;

4 //can ignore x coordinate, since we rotate around x axis

5 return atan2f(p_j_image.z(), p_j_image.y());

6 }

Listing 4.2: planarRotAngle(pi, ni, pj): Computes the angle α∗ between the image of pj
and the upper xy half-plane. (Eigen/C++)

36

4.2. Pairwise coarse alignment

4.2.4. Pose clustering and averaging

Algorithm 5: POSE CLUSTERING AND AVERAGING

Input: P = {(P1, v1), ..., (PNs , vNs)} pose estimates with scores
Params: ttra, trot thresholds for translation and rotation
Output: (Pest, vsum) best averaged pose estimate with score

1 P ← sortDecr(P) // sort decreasing by v
2 K ← {{P(1)}, · · · , {P(Ns)}} // initialize pose clusters
3 for i← 1 to Ns do
4 for j ← 1 to Ns do
5 if i 6= j then
6 if ∀(Pi, Pj) ∈ K(i)1st ×K(j)1st :
7 isPoseSimilar(Pi, Pj , trot, ttra) then // Listing 4.3
8 K(i)← K(i) ∪ K(j)
9 K ← K \ K(j)

10 Q← poseWithScoreList(size(K))
11 for i← 1 to size(K) do
12 Pest ← averagePose(K(i)1st) // uses quaternion mean (3.6)
13 vsum ← sum(K(i)2nd)
14 Q(i)← (Pest, vsum)

15 Q ← sortDecr(Q) // sort decreasing by v
16 return Q(1)

TheNs peaks in the list of accumulator matrices correspond to the most likely alignment
of quantized scene and model point pair features. Thus, the pose estimates computed
with these alignments are quantized as well. However, due to the subsampling and noise
in the input data, peaks in the list from different scene reference points might actually
describe the same transformation, even though the computed pose estimates differ slightly.
This can be seen as having multiple noisy measurements in the space of 6DoF rigid body
motions. To get an even better initial estimate, one has to cluster and then average similar
poses. From a statistical point of view, the averaging step of similar poses can be seen as
the ML estimate of the most likely pose, given that they are the disturbed versions of the
true pose, produced by Gaussian noise.

First, we sort the poses by the number of votes they received. This ensures that the
most likely poses are clustered together. We employ an agglomerative clustering algo-
rithm, meaning that each pose estimate starts in its own cluster (line 2 in algorithm 5).
Subsequently, pairs of clusters are merged if all the combinations of poses between these
two clusters do not differ in rotation and translation for more than the predefined thresh-
olds ttra, trot. This is effectively the complete linkage clustering criterium, meaning that the
distance between clusters is a function of the pairwise distances between the poses they
contain:

d(K(i),K(j)) = max{d(Pi,Pj),Pi ∈ K(i),Pj ∈ K(j)}
In the for loop in line 11, the poses in the remaining clusters are averaged and their votes

37

4. Approach

summed up per cluster. Lastly, we sort the pose estimates again by decreasing number of
votes and finally return the averaged pose that received the highest sum of votes.

To reduce the number of needed parameters, we just set the translation and rotation
thresholds as follows per default and never touch them again:

ttra = 0.05 ∗ diam(M) (4.15)
translation threshold

trot = 15◦ (4.16)
rotation threshold

This was the last step of our coarse pairwise alignment. In the next section, we further
refine this initial estimate using ICP.

1 bool isPoseSimilar(Isometry3f P_i, Isometry3f P_j, float t_rot, float t_tra){

2 //Translation

3 float d_tra=(P_i.translation()−P_j.translation()).norm();
4 //Rotation

5 float d = Quaternionf(P_i.linear()).dot(Quaternionf(P_j.linear()));

6 float d_rot = rad2degM(acos(2*d*d − 1));

7 return d_rot <= t_rot && d_tra <= t_tra;

8 }

Listing 4.3: isPoseSimilar(Pi, Pj , trot, ttra): checks if two poses are similar. Quaternion
distance measured as in (3.4) (Eigen/C++)

38

4.3. Pairwise refinement

4.3. Pairwise refinement

Algorithm 6: PAIRWISE REFINEMENT

Input: A = {a}Na
1 data, B = {(b, nb)}Nb

1 model cloud with normals
PA→B initial relative pose estimate
KB k-d tree of the model cloud

Output: PA→B refined relative pose estimate
Params: dmax rejection threshold (3.17), pointP lane boolean flag

1 while not converged do
2 i← 1
3 p, q, nq ← growableList()
4 for j ← 1 to Na do
5 ainBj ← PA→B ∗ aj
6 d, k ← kdTreeLookup(KB, a

inB
j) // distance and index

7 if d < dmax then
8 pi ← ainBj
9 qi ← bk

10 nqi ← nbk
11 i← i+ 1

12 if pointP lane then // true per default
13 Pupd ← pointToP lane(p, q, nq) // A.3

14 else
15 Pupd ← pointToPoint(p, q) // A.2

16 PA→B ← Pupd ∗ PA→B
17 return PA→B

Once two point clouds are roughly aligned, we can use ICP to further refine this coarse
initial alignment using algorithm 6. As outlined in section 3.6, ICP consists of two steps
that are iteratively applied until convergence: computing correspondences (line 4 to 11)
and computing and applying the transformation which minimizes the distance between
these correspondences (line 12 to line 16).

4.3.1. Correspondences

We speed up the computation of correspondences (in line 6) using a precomputed k-d
tree as explained in (subsection 3.5.2). Projection-based matching (subsection 3.5.4) is not
possible, since downsampling destroyed the organized structure of our point cloud. We
also did not use the distance transform (subsection 3.5.3), because we wanted to avoid to
compute and store bounding volumes for each of our point clouds. We use the nanoflann3

library for k-d tree construction and exact O(log(n)) nearest neighbor searches. The most
expensive operation is the initial construction of the tree, which is in O(n log(n)) in the

3 https://github.com/jlblancoc/nanoflann

39

https://github.com/jlblancoc/nanoflann

4. Approach

best case. This means that it is best if we only have to construct the tree just once in the be-
ginning, and then leave the points of each point cloud untouched and don’t project them
during the ICP iterations. This can actually be achieved by leaving the points in their
respective camera coordinate system, computing the tree once KB initially in that coordi-
nate system, and then just updating the pose of the camera (line 16) instead of projecting
the points into the global coordinate system. Now, for a nearest neighbor lookup (line 6),
we just have to transform the point aj for which we want to find a nearest neighbor into
the camera coordinate system of the model cloud B (line 5), and then look up its nearest
neighbor in the precomputed k-d tree TB of the model cloud (line 6).

If the distance d is below the rejection threshold dmax (3.17) (in line 7), we found a cor-
respondence ainBj → bk and save it as {pi → qi}. The arrays p and q are now indexed by
their correspondences and outlier pairs have been removed, as needed for the next step in
ICP, updating the transformation.

4.3.2. Transformation

In general, it doesn’t matter in which coordinate system the correspondences {pi → qi}
are defined, since all we do in the end is to apply an incremental transformation update
Pupd (line 16) to the relative pose estimate PA→B. A trivial choice is the camera coordinate
system of B. For minimizing the distances defined on these correspondences, we observed
that point to plane (3.25) gives better accuracy than point to point (3.24), which is most
likely due to the fact that we are dealing with range images, for which point to plane was
actually designed. While the first version additionally needs the normals of the model
cloud, the second version gets along without them. Our actual implementations of both
function calls in lines 13 and 15 can be found in appendix A.3 and A.2, respectively.

The coarse pose estimates we got from the point pair feature alignment turned out to be
good enough for ICP to converge well in general. This means that we can set the rejection
threshold dmax (3.17), used in the rejection step (in line 7), rather small to allow for more
accuracy at the sake of stability. Per default, we set it equal to the distance quantization
step ddist (4.9):

dmax = ddist (4.17)

Alternatively, we could use a robust loss function like the Huber loss (3.20) to minimize
the impact of outliers. But then, we would not have nice closed form linear least-squares
solutions anymore for either of the above choices.

40

4.4. Multiview refinement

4.4. Multiview refinement

Once all the pairwise alignment and refinement is finished, we can even further optimize
the refined pose estimates by optimizing them all together. We do this by extending the
LM-ICP algorithm from subsection 3.6.5 to the simultaneous alignment of more than two
views, which we call Multiview LM-ICP, as introduced by Fantoni et al. [12]. In our
overall algorithm(algorithm 2) we first compute the absolute pose of each camera from the
relative pose constraint to its neighbor from the pairwise alignment and refinement. With
this absolute pose, the topology of the correspondences between views can be modeled as
a graph and the resulting global registration error reduced via pose graph optimization,
for which specialized frameworks have been developed.

Algorithm 7: MULTIVIEW REFINEMENT

Input: C = {C1, C2, ...CM} point clouds
P = {P1, P2, ..., PM} camera poses

Output: P = {P1, P2, ..., PM} refined camera poses
Params: dmax rejection threshold (3.17), knn, nGraphUpdates

1 for i← 1 to nGraphUpdates do // nGraphUpdates = 1 per default
2 optimizer ← g2oGraphOptimizer()
3 optimizer.addNodes(P)
4 for h← 1 to M do
5 {k1, · · · , kknn} ← knnPoseNeighbours(Ph,P)
6 for j ← 1 to knn do
7 eh,kj ← pairwiseCorrespondences(Ch, Ckj , dmax)

8 optimizer.addDirectedEdges(eh,kj , Ph, Pkj)

9 while not converged do
10 X = {x1, x2, · · · , xM} ← optimizer.computePoseUpdates()
11 if error reduced then
12 P ← P + X

13 return P

The overall structure of ICP (section 3.6) is preserved: computing correspondences in
each iteration of the outer loop (line 1) and computing and applying the transformation
which minimizes the distance between these correspondences (line 9). The only difference
is that these transformation updates are now applied iteratively in the inner loop.

4.4.1. Global registration error

LetC1, . . . CM be the set of point clouds that are brought to be in alignment. Remember the
alignment error from the pairwise setting, where g stood for the transformation aligning
the model cloud to the data cloud:

E(g) =
N∑

i=1

||d(g(pi), qi)||2 (3.29)

41

4. Approach

In the multiview setting, the roles of model and data cloud are no longer fixed. To gener-
alize and formalize the notation of which cloud gets registered to which other cloud, we
can encode these relations as a directed graph, with the adjacency matrix A ∈ {0, 1}M×M ,
such that A(h, k) = 1 if cloud Ch can be registered to cloud Ck. Let g1, . . . gM be the rigid
transformations that are applied to each view in the global reference frame. The alignment
error between two clouds Ch and Ck then is:

E(gh, gk) = A(h, k)
Nh∑

i=1

||d(gh(phi), gk(q
h
i))||2 (4.18)

where {phi → qhi } are the Nh closest point correspondences obtained from the the clouds
Ch and Ck (line 7). Since we still only update the camera poses, we can obtain them the
same way as in the pairwise refinement (section 4.3) and even reuse the k-d-trees from
before. The pairwise formulation (3.29) can be obtained by setting g = gk ∗ g−1

h . The
overall alignment error, which we want to minimize at this stage, is obtained by summing
up the contribution of every pair of overlapping views:

E(g1, ...gM) =
M∑

h=1

M∑

k=1

A(h, k)
Nh∑

i=1

||d(gh(phi), gk(q
h
i))||2 (4.19)

In practice, we assume that clouds are overlapping and can be registered to each other if
the distance between the translational components of their poses is small. Because it is
hard to specify an absolute threshold that works for different scenarios, we compute the
knnPoses nearest neighbors in the Euclidean space of their translation vectors (line 5). Even
if this assumption is invalid for some of the pose pairs (i.e. if the rotational components
are totally different, meaning that the cameras look in opposite directions), it doesn’t hurt
our algorithm, because only point to point correspondences smaller than dmax (line 7) are
considered. We use a neighbor list of length knnPoses for each pose instead of an adjacency
matrix A, because it allows faster lookup of neighbours.

4.4.2. Sparsity structure of the linearized system

The error vector for one closest point correspondence between two point clouds is eh,k,i =
d(gh(phi), gk(q

h
i)). Since the error function of a constraint depends only on the values of

two nodes, namely start and end node of that edge, the Jacobian

J =
∂(eh,k,i)

∂(g1 . . . gM)
(4.20)

has a regular sparse block structure. Let S = {(h, k) : A(h, k) = 1} be the set of overlapping
views, equivalent to the set of directed edges in our pose graph, where an edge is added if
there are correspondences between the two camera nodes. Given a view pair (h, k) whose
index is s, the block row

Js = [0 · · · 0 Js,h 0 · · · 0 Js,k 0 · · · 0] (4.21)

42

4.4. Multiview refinement

has only two non-zero blocks, where the block column indices h, k correspond to the cam-
era poses gh, gk whose clouds are connected by the constraint imposed through their clos-
est point correspondences. A camera pose gh is thus only affected by the alignment if its
block column contains some non-zero blocks.

In LM-ICP, we introduced the vector of residuals e = [eTi , · · · , eTN]T ∈ R3N (3.32). In the
multiview setting, each pairwise correspondence yields such a vector e = eh,k. These can
be stacked as well into

ẽ = (eT1,1, . . . , e
T
1,M), (eT2,1, . . . , e

T
2,M), . . . (eTM,1, . . . , e

T
M,M) (4.22)

Most of these elements are zero and can be dropped, we only have |S| non-zero entries eh,k.
The only requirement the stacked vector ẽmust fulfill is that its elements are ordered in the
same way as the block rows in J to which they correspond. In that way, we can retrieve
the gradient b = J ′ẽ as well as the approximate Hessian H = J ′J . No matter how many
correspondences we actually used to compute them, their block structure looks always the
same, its dimension does only depend on the number of cameras M . That means b has
exactly M block columns and one block row, while H consists of M ×M blocks. These
blocks are exactly the pairwise stacked Jacobians Jh,k as in (3.33). Interestingly, the block
structure of H corresponds to our graph adjacency matrix A, meaning that every non-zero
block in H , which is the Jacobian Jh,k, corresponds to a A(h, k) = 1.

This sparsity structure can and must be exploited to arrive at practicable algorithms to
compute the Levenberg update step (line 10) at each inner iteration:

x = −(JTJ + λI)−1JT ẽ (3.37)

Remember that x was computed by solving the augmented normal equations (JTJ +
λI)x = JT ẽ ⇔ (H + λI)x = −b (3.38). Direct sparse Cholesky solvers allow to solve
the left side of the equation efficiently, which are applicable because H+λI is a symmetric
positive definite matrix, while the right side, the gradient b, is obtained by a sparse matrix
vector multiplication.

4.4.3. Pose graph optimization

In our implementation, we use the g2o framework4 of Kummerle et al. [28], which helps
in assembling the Jacobian and the residual vector from a simple graph structure. Further-
more, it already includes implementations of the Levenberg algorithm as well as of sparse
Cholesky solvers for efficiently computing the Levenberg update step x at each iteration.

Additionally, there is a sample implementation of GICP (subsection 3.6.4) Vertices and
Edges5, which we can use directly. We don’t need to worry about a big sparse equation
system, all we have to do is to add each camera pose P ∈ SE(3) as a node (line 3) and
each point to point correspondence’s distance vector eh,k,i as an edge between two nodes
(line 8). We used the point-to-plane incarnation of GICP (3.28), because the more sophis-
ticated plane-to-plane implementation seemed to be buggy. The residual vector and the

4 http://openslam.org/g2o.html
5 https://github.com/RainerKuemmerle/g2o/blob/master/g2o/types/icp/types_icp.

cpp

43

http://openslam.org/g2o.html
https://github.com/RainerKuemmerle/g2o/blob/master/g2o/types/icp/types_icp.cpp
https://github.com/RainerKuemmerle/g2o/blob/master/g2o/types/icp/types_icp.cpp

4. Approach

Jacobian are then computed automatically.
The space of parameters P ∈ SE(3) is not Euclidean, because the rotational part spans

over the non-Euclidean SO(3) group. Above procedures only work if the space of parame-
ters is Euclidean. However, SE(3) is a manifold, and can thus be locally approximated by
its tangent space around the identity. The above implementation uses the axis of a normal-
ized quaternion as a minimal representation for the rotational part of the update steps x.
After each update, the quaternion has to be renormalized. Another and more elegant way
is to use the Lie algebra se(3) to represent the updates. We did this in our Matlab LM-ICP
implementation A.4 and also in our Matlab Multiview-LM-ICP implementation,6 which
works well for small problem sizes. In future work, we plan to port this code to C++.

The increments P ← P + X (line 12), meaning Pi ← Pi + xi ∀i ∈ [0,M], are applied by
first converting xi through a non-linear operator to the same representation as Pi, and then
left multiplying this transformation update by standard motion composition, denoted as
⊕ in [28]. The nonlinear operator, denoted as � in [28] is the quaternion to rotation matrix
operator or the exponential map, depending on which parametrization of SE(3) is used.

The g2o framework additionally gives us the freedom to switch the nonlinear optimizer
through one line of code. Experimentally, we found out that the pose graph was optimized
faster using Powell’s Dogleg method than the more robust Levenberg-Marquardt algo-
rithm. The first one converged because most of our pairwise refined poses were already
quite close to the optimum. Because of this, we suggest that the user chooses between
the faster Powell’s Dogleg algorithm or the more robust Levenberg-Marquardt algorithm,
which has a wider basin of convergence, based on the quality of the result of the pairwise
refinement.

6 https://github.com/adrelino/ppf-reconstruction/blob/master/matlab/mv_lm_icp_
step.m

44

https://github.com/adrelino/ppf-reconstruction/blob/master/matlab/mv_lm_icp_step.m
https://github.com/adrelino/ppf-reconstruction/blob/master/matlab/mv_lm_icp_step.m

5. Evaluation

We evaluate our approach on both real and synthetic data and give qualitative as well as
quantitative results concerning accuracy as well as speed. In the following, we encode the
different stages of our algorithm as:

0 A B C
preprocessing pairwise alignment pairwise refinement multiview refinement

5.1. Datasets

We use a subset of the real and synthetic datasets which were made by Slavcheva [44]. For
some of the larger sequences, we use only every step′th frame. This works well for us since
we don’t need to rely on the small motion assumption. In general, using around 50 frames
that sufficiently cover the object from all sides is totally enough for a decent reconstruction
of objects of the sizes we considered (10− 40cm in diameter).

Real dataset Real data was acquired with a PrimeSense sensor from objects placed on a
marker-board (only used to get ground truth), which sits on a turntable. The trajectories
obtained by rotating the table are circular and sometimes very large, up to 500 frames, so
we only use every step′th frame.

6.1. Test Datasets

GIS Datasets and Trajectories

The Siemens Global Inspection System allows for manual selection of a trajectory, which
is subsequently used for scanning an object. We acquired two sequences of 72 poses in a
circular trajectory with spacing 5°. The models are shown in Figure 6.3.

Figure 6.3.: GIS models: turbine, Pumba

In this setup we have the groundtruth trajectories at our disposal, together with high
quality RGB-D pairs of resolution 4008⇥ 2672 pixels.

Kinect Datasets and Trajectories

We acquired sequences of 10 everyday objects using a Kinect-like device. The objects were
placed on a turntable, which was rotated in front of a fixed sensor. In addition, we placed
a markerboard on the turntable, which was used for groundtruth pose estimation, but not
utilised in the reconstruction pipeline itself. The variety of objects can be seen in Figure
6.4. They were again chosen to represent a wide range of different shapes and textures:

• reflective: phone, muesli box;

• with a single symmetry axis: Pumba, cow, milk box, book;

• radially symmetric (cylindrical): muesli box, tape;

• geometry with fine structures: turbine blade, Pumba, bench vise.

Figure 6.4.: Kinect-like models: bunny, blade, phone, Pumba, cow, milk box, muesli box, book, tape, bench vise

49

Figure 5.1.: Real models: bunny, blade, phone, Pumba, cow, milk box, muesli box, book, tape, bench vise
[44]

Synthetic dataset Slavcheva [44] uses Blender1 to generate sequences of RGB-D images
from 9 different models. Each sequence contains exactly 120 frames, sampled from 3 dif-
ferent kinds of trajectories. The ground truth we use to evaluate our approach are the
actual camera locations as specified in Blender. We only use the range images and discard

1 http://www.blender.org/

45

http://www.blender.org/

5. Evaluation

the color images. The point clouds obtained from each range image are virtually free from
any noise and sampling artifacts.

6. Evaluation Methodology

Figure 6.1.: Synthetic models: bunny, Kenny, teddy, cow, tram, leopard, juice box, tea box, turbine

• Wavy trajectory: sine wave frequency 5, amplitude 30 cm. Models hand-held sen-
sors.

• Abrupt trajectory: sine wave frequency 10, amplitude 40 cm. Designed for identifi-
cation of failure cases, since this is a quasi-unrealistic movement for a human.

circular

wavy

abrupt

Figure 6.2.: Synthetic trajectories

The datasets were rendered using Blender with the standard VGA resolution (640⇥ 480
pixels) of Kinect-like sensors. In this way we had 27 synthetic trajectories at our disposal,
for each of which we have the original CAD model, the groundtruth trajectory, and noise-
free RGB-D images. This is the complete set of information needed for any of the evalua-
tion metrics, as explained later on in this chapter.

48

Figure 5.2.: Synthetic models: bunny, Kenny, teddy, cow, tram, leopard, juice box, tea box, turbine [44]

6. Evaluation Methodology

Figure 6.1.: Synthetic models: bunny, Kenny, teddy, cow, tram, leopard, juice box, tea box, turbine

• Wavy trajectory: sine wave frequency 5, amplitude 30 cm. Models hand-held sen-
sors.

• Abrupt trajectory: sine wave frequency 10, amplitude 40 cm. Designed for identifi-
cation of failure cases, since this is a quasi-unrealistic movement for a human.

circular

wavy

abrupt

Figure 6.2.: Synthetic trajectories

The datasets were rendered using Blender with the standard VGA resolution (640⇥ 480
pixels) of Kinect-like sensors. In this way we had 27 synthetic trajectories at our disposal,
for each of which we have the original CAD model, the groundtruth trajectory, and noise-
free RGB-D images. This is the complete set of information needed for any of the evalua-
tion metrics, as explained later on in this chapter.

48

Figure 5.3.: Synthetic trajectories [44]

More bunnies We love the Stanford bunny.2 It usually gives really good results3 because
of its distinctive geometry, which is why we used it from the very beginning, before acquir-

2 http://graphics.stanford.edu/data/3Dscanrep/
3 http://www.cc.gatech.edu/~turk/bunny/bunny.html

46

http://graphics.stanford.edu/data/3Dscanrep/
http://www.cc.gatech.edu/~turk/bunny/bunny.html

5.2. Qualitative results

ing the above datasets, to test and develop different aspects of our method. So in addition
to the above, we have two more bunny sequences.

The first one is from real data and a smaller marker-board and was thus captured at
a closer range than the one from the dataset above. The segmentation was also better,
resulting in less noise compared to the dataset. It is a circular trajectory of 36 frames. We
love it and thus just call it bunny2.

The second one is synthetically generated, but not by any of the three trajectories from
above. Instead, 41 positions are sampled on a unit sphere around the model, some of which
have large displacements in between. This sequence inspired us to develop the pairwise
matching method which matches to the last nFrames and chooses the match with the
highest vote, resulting in a relative pose dependency tree. This one is called bunny sphere.

5.2. Qualitative results

Fused point clouds as well as the 3D trajectories are used to visually compare the results.
We fuse the original, non-subsampled point clouds for better visibility of the fine-scale
alignment, even though they were not even used by our algorithm. We try to choose the
best viewing angle for the 2D projection of the trajectory and the point cloud to highlight
the important details. In the following figures, the columns (A|B|C) stand for the results
of the different stages of our algorithm. The first three examples are from real data, while
the last five are from synthetic data.

5.2.1. Discussion

It was possible to find a right set of parameters to reconstruct all the objects with distinc-
tive geometry. In most examples, each step improved the visual result. The multiview
refinement improved details such as tail and ears of bunny2 (figure 5.4) or the legs of the
cow (figure 5.8). The noise visible in the original real data, especially in (figure 5.6), was no
problem, since it was filtered out by our voxel-based denoising (subsection 4.1.4). Pumba’s
(figure 5.5) legs are spread out, the estimated trajectory is bent towards the viewer at the
top and the bottom because there is little point cloud overlap at the right and left side of
the object due to its axial symmetry and long shape. In this case, our multiview refinement
even worsened the error. Notice the relative pose dependency tree in bunny sphere (figure
5.7), to which we add further edges before the global refinement, after which it looks like
a neatly triangulated sphere. Similarly in teddy abrupt (figure 5.11).

Our only failure case in these examples is the symmetrical juice box (figure 5.9). The
pairwise alignment and refinement works well for half of the trajectory, but then suddenly
it does a 180 degrees turn and stitches the top of the juice box to the bottom.

Interestingly, our pairwise alignment fails for Kenny (figure 5.10), which exhibits reflec-
tional (left and right half when looking from front) as well as partial rotational symmetry
(especially its helmet). But the pairwise refinement is still able to recover from these bad
pose estimates.

47

5. Evaluation

Figure 5.4.: bunny2

Figure 5.5.: Pumba -diamM 0.07 -step 15 -knn 4 -dmax 0.05

48

5.2. Qualitative results

Figure 5.6.: bench vise -step 15

Figure 5.7.: bunny sphere -knn 5 -nFrames 5

49

5. Evaluation

Figure 5.8.: cow wavy -step 5

Figure 5.9.: juice box wavy -step 3

50

5.2. Qualitative results

Figure 5.10.: Kenny wavy -step 5 -diamM 0.4 -knn 4

Figure 5.11.: teddy abrupt -nFrames 5 -knn 4 -diamM 0.5

51

5. Evaluation

5.3. Quantitative results

The accuracy of our approach may also be described in numbers, because we have some
sort of ground truth for both synthetic as well as real data and can thus compare our
estimated poses to them. Formally, for a sequence of n frames, we have

P = {P1, · · · , Pn} ∈ SE(3) pose estimates (5.1)
Q = {Q1, · · · , Qn} ∈ SE(3) ground truth poses (5.2)

that need to be compared. To derive meaningful evaluation metrics on the difference
between rigid body motions, we follow the approach of Sturm et al. [46].

Relative Pose Error (RPE) The relative pose error RPE at time step i with interval width
∆ is defined as:

Ei,∆ := (Q−1
i Qi+∆)−1(P−1

i Pi+∆)−1 (5.3)

The relative pose error measures the local accuracy of the trajectory over a fixed interval ∆.
It corresponds to the drift of the trajectory, which is in particular useful for the evaluation
of Visual Odometry (VO) systems [46]. From a sequence of n camera poses, one obtains
m = n−∆ individual relative pose errors along the sequence. For visual odometry systems
that match consecutive frames, such as our pairwise alignment and refinement algorithm
if we set nFrames = 1, ∆ = 1 is an intuitive choice, giving the drift per frame. In this case,
we obtain m = n− 1 individual RPEs, corresponding to pairs of consecutive frames.

Absolute Trajectory Error (ATE) The absolute trajectory error ATE at time step i is de-
fined as:

Fi := Q−1
i SPi (5.4)

The absolute trajectory error measures the global consistency of the estimated trajectory,
which can be evaluated by comparing the absolute distances between the estimated and
the ground truth trajectory. Therefore, it is a useful metric for the global consistency of our
reconstructed model, especially after the multiview refinement step. Because both trajecto-
ries can live in different coordinate systems, we additionally need the rigid body motion S
that aligns them in the least-squares sense. It is obtained by registering all the translational
parts of Q to the ones of P using Arun et al. [2], which is exactly the formula we imple-
mented for our point to point ICP step (A.2). We obtain n individual ATEs, corresponding
to pairs of ground truth and estimated pose for every frame.

Translation encodes rotation The above measures at time step i are the poses Ei, Fi ∈
SE(3), respectively. For a sequence of such rigid body motions g = (R, t) ∈ SE(3), we
only need to consider the translational component t, because it encodes the rotational com-
ponent [46]. In RPE, rotational errors show up as translational errors when the camera is
moved, thus the authors found that comparing translational errors only is sufficient. In
ATE, rotational errors typically also manifest themselves in wrong translations and are
thus indirectly also captured.

52

5.3. Quantitative results

Statistics For a trajectory of length n, we compute n−1 RPEs and nATEs, represented by
the norms ei of their translational components ti ∈ R3, so ei = ||ti||2 =

»
t2i,x + t2i,y + t2i,z ∈

R. Now we can use some simple statistics to more compactly describe a set of scalar errors
of length n (similarly for n − 1). A popular choice in our domain seems to be the Root
Mean Squared (RMS) error:

rms =

Ã
1

n

n∑

i=1

e2
i (5.5)

Additionally to the rms, we compute standard statistics like the mean that gives less
weight to outliers, the min and the max as well as the standard deviation std.

5.3.1. Discussion

Table 5.1 and Table 5.2 show the accuracy on real and synthetic data after each stage of
our algorithm as well as the improvements between the stages. It can be observed that
the pairwise refinement reduced both RPE and ATE errors by about 90 percent, except for
our failure case of the symmetric juice box. If this initial alignment was good enough (for
all except Pumba and juice box), the multiview refinement further reduced RPE as well as
ATE, but the percentual improvement in ATE was usually twice that of RPE. This makes
sense, considering that ATE measures global consistency, which is what our multiview re-
finement tries to improve.

Further we conducted experiments of speed vs. accuracy while changing different pa-
rameters and leaving other parameters fixed. The preprocessing running times were not
affected by the parameters. The pairwise refinement converges blazingly fast (under 1
second for the whole sequence) because we use k-d-trees and an efficient direct imple-
mentation to minimize the ICP point to plane energy, as given in section A.3.

Table 5.3: Accuracy can be improved by lowering the distance sampling rate τd (4.6). A
good balance between speed and accuracy is achieved with our default value of 0.10. A
higher value accelerates the coarse pair-wise alignment, but lets the multiview refinement
converge slower and to a worse solution when fed with these coarser initial estimates.

Table 5.4: Increasing the number of frames nFrames to which one tries to match the
current frame will of course increase the running time of the coarse pairwise alignment
step while leaving the other running times untouched. But for some sequences, such as
bunny sphere, this is absolutely necessary, since it happens that consecutive frames don’t
overlap. We did not include the test with -nFrames 02 in the plot, because there, the final
accuracy is 0.1 for RPE and 0.2 for ATE, a factor of 10 worse than for -nFrames 03, while
the running time is about the same as for nFrames 03, because the multiview refinement
runs longer when given such bad initial estimates.

Table 5.5: Increasing the number of nearest neighbors knn to which we add edges before
the multiview refinement step only affect the runtime of this last step. The accuracy really
depends on the actual topology of the underlying graph. For bunny sphere, the best ac-
curacy is achieved if each vertex has around 5-6 neighbors, which corresponds to the nice
triangulation of this sphere as seen in the qualitative section.

53

5. Evaluation

sequence
S

RPE [mm/%] ATE [mm/%]
params rms mean std min max rms mean std min max

bunny2

A 32.311 28.996 14.254 4.932 68.382 74.097 68.679 27.812 20.907 141.886
↓ 88 89 85 92 88 91 92 89 91 89
B 3.936 3.330 2.098 0.412 8.365 6.610 5.803 3.165 1.893 14.910
↓ 15 14 17 -59 17 21 15 47 -11 32
C 3.344 2.859 1.735 0.655 6.962 5.212 4.932 1.685 2.110 10.070

bunny
-step 20
-knn 5

A 70.769 60.943 35.975 10.246 154.445 305.968 281.249 120.479 95.815 555.003
↓ 83 82 83 86 83 64 66 52 71 61
B 12.325 10.728 6.068 1.449 26.618 111.651 95.818 57.313 27.865 215.305
↓ 15 16 10 -16 -1 53 50 64 44 57
C 10.494 8.964 5.457 1.684 27.011 52.448 48.233 20.601 15.683 91.872

blade
-step 15

A 90.248 70.332 56.551 2.542 239.625 288.147 253.961 136.134 43.080 494.748
↓ 62 72 50 52 47 58 61 50 77 52
B 34.706 19.963 28.390 1.231 126.032 120.684 99.421 68.411 10.033 238.690
↓ 9 22 3 19 -0 56 56 55 4 35
C 31.632 15.613 27.511 0.997 126.368 53.064 43.293 30.684 9.674 155.886

phone
-step 20
-knn 5

A 108.270 90.488 59.449 22.374 312.704 479.117 468.869 98.564 230.952 756.462
↓ 80 79 81 86 83 70 73 24 87 61
B 21.926 18.739 11.383 3.023 52.713 145.851 125.348 74.568 29.053 297.482
↓ 22 24 18 70 21 49 48 56 31 49
C 17.001 14.200 9.349 0.918 41.631 73.658 65.768 33.167 19.903 151.880

Pumba
-diamM 0.07
-step 15
-knn 4
-dmax 0.05

A 111.926 90.269 66.172 19.144 283.182 367.296 337.233 145.534 116.170 702.401
↓ 83 84 81 92 79 74 72 82 56 80
B 19.295 14.810 12.367 1.475 58.741 96.967 93.496 25.710 51.569 143.857
↓ -12 -8 -17 19 -6 -16 -17 -14 -38 -19
C 21.519 15.982 14.411 1.189 62.218 112.917 109.038 29.342 71.380 171.405

cow
-step 15
-diamM 0.1

A 118.987 95.633 70.796 7.854 322.196 428.768 375.221 207.489 81.748 867.979
↓ 87 87 87 92 85 81 81 82 69 82
B 15.478 12.315 9.377 0.652 47.395 80.812 71.985 36.725 25.639 159.731
↓ 2 4 -0 23 -4 -6 -6 -9 29 1
C 15.150 11.881 9.401 0.501 49.189 85.912 76.066 39.936 18.306 158.271

book
-step 15
-diamM 0.2

A 71.394 56.598 43.518 14.760 170.864 467.909 430.521 183.278 139.108 867.919
↓ 73 82 63 98 46 93 93 93 90 89
B 19.024 10.046 16.155 0.300 92.019 33.938 31.092 13.604 14.147 96.956
↓ 3 12 -0 -65 1 33 34 26 73 21
C 18.451 8.834 16.199 0.496 90.800 22.814 20.475 10.062 3.803 76.508

bench vise
-step 15

A 72.998 67.519 27.747 13.559 138.257 215.475 184.514 111.283 41.895 493.878
↓ 83 85 74 90 78 76 75 78 72 82
B 12.287 9.979 7.168 1.303 30.414 52.579 46.602 24.346 11.843 90.784
↓ 26 23 34 -4 41 59 58 62 45 55
C 9.031 7.676 4.758 1.361 17.924 21.737 19.662 9.270 6.549 40.583

Table 5.1.: Accuracy on real datasets: A,B,C stand for the stage of the Algorithm. ↓ indicates the relative
improvements between those stages in %. Passed parameters appear below the sequence name,
otherwise the default values are used

54

5.3. Quantitative results

sequence
S

RPE [mm/%] ATE [mm/%]
params rms mean std min max rms mean std min max

bunny sphere
-knn 5
-nFrames 5

A 65.799 54.217 37.283 3.377 171.165 125.697 108.222 63.937 11.194 322.437
↓ 69 69 70 41 72 76 76 78 42 78
B 20.212 16.833 11.189 1.992 48.419 29.737 26.353 13.776 6.541 70.087
↓ 34 35 33 76 44 58 57 61 48 65
C 13.278 10.929 7.540 0.482 27.300 12.445 11.256 5.309 3.381 24.489

cow wavy
-step 5

A 38.893 32.589 21.228 4.434 110.011 78.353 71.332 32.418 23.160 146.695
↓ 87 88 86 95 90 86 86 87 95 86
B 4.915 3.947 2.929 0.211 10.695 10.674 9.814 4.196 1.260 20.307
↓ 18 29 2 -17 -5 50 51 46 26 39
C 4.021 2.803 2.883 0.247 11.260 5.301 4.789 2.273 0.938 12.344

leopard wavy
-step 5
-diamM 0.3
-knn 4

A 36.106 33.840 12.590 14.916 69.583 70.558 62.355 33.019 14.593 157.004
↓ 82 83 74 89 80 87 87 88 93 89
B 6.569 5.671 3.314 1.567 14.246 9.335 8.415 4.041 1.048 17.257
↓ 15 28 -15 86 -18 43 43 43 -148 30
C 5.594 4.109 3.796 0.226 16.851 5.280 4.756 2.292 2.599 12.005

juice box
wavy
-step 3

A 124.981 39.776 118.482 1.076 549.358 520.406 442.792 273.418 159.439 934.931
↓ 3 21 1 57 0 2 1 4 17 2
B 121.612 31.256 117.526 0.462 547.635 511.973 438.984 263.457 132.380 914.523
↓ -1 -0 -1 14 -0 0 1 -2 -16 -1
C 122.356 31.375 118.265 0.398 549.396 509.811 433.165 268.841 153.275 920.450

Kenny wavy
-step 5
-diamM 0.4
-knn 4

A 146.957 137.339 52.292 18.787 211.494 478.807 467.906 101.589 239.615 709.235
↓ 86 89 76 87 72 90 92 74 97 87
B 20.004 15.523 12.618 2.400 58.923 46.516 38.589 25.973 7.942 92.715
↓ 12 15 7 42 15 26 25 28 58 28
C 17.619 13.126 11.753 1.393 50.151 34.490 29.064 18.571 3.316 66.753

teddy circle
-diamM 0.3
-step 4
-knn 4

A 77.922 71.636 30.661 10.509 152.740 366.251 356.196 85.228 240.767 573.667
↓ 94 95 91 91 92 95 96 89 99 94
B 4.712 3.887 2.664 0.923 11.906 17.075 14.112 9.614 3.076 34.742
↓ 41 37 49 63 37 45 47 41 70 46
C 2.789 2.429 1.369 0.341 7.509 9.331 7.435 5.638 0.935 18.771

teddy wavy
-step 4
-diamM 0.4

A 84.573 75.949 37.206 13.004 168.541 333.451 317.047 103.300 151.981 626.474
↓ 88 89 85 89 85 90 90 88 94 90
B 10.052 8.336 5.617 1.438 24.686 32.705 30.174 12.615 9.685 64.118
↓ 21 19 25 59 17 50 48 62 20 59
C 7.963 6.754 4.218 0.596 20.374 16.495 15.790 4.771 7.737 26.207

teddy abrupt
-nFrames 5
-knn 4
-diamM 0.5

A 73.390 59.036 43.599 8.475 221.957 274.761 255.011 102.287 58.764 600.277
↓ 82 81 84 83 85 86 86 82 83 84
B 13.423 11.397 7.091 1.456 32.225 39.428 35.027 18.102 10.071 93.824
↓ 33 30 40 48 37 50 48 56 86 57
C 9.028 7.976 4.230 0.754 20.436 19.715 18.059 7.908 1.377 40.025

Table 5.2.: Accuracy on synthetic datasets: A,B,C stand for the stage of the Algorithm. ↓ indicates the
relative improvements between those stages in %. Passed parameters appear below the sequence
name, otherwise the default values are used

55

5. Evaluation

Table 5.3.: Speed vs. accuracy on bunny2 : The distance sampling rate τd (4.6) is modified

Table 5.4.: Speed vs. accuracy on bunny sphere -knn 06 : The number nFrames of frames to match to
during the coarse pairwise alignment is modified

Table 5.5.: Speed vs. accuracy on bunny sphere -nFrames 06 : The number of knn nearest neighbors
to add to the pose graph before multiview refinement is modified

56

6. Summary and outlook

6.1. Conclusion

We developed a method that is able to reconstruct small objects from range images us-
ing only geometric information. Our method works well for objects that exhibit a certain
amount of variation in geometry. We are able to reconstruct most objects with decent accu-
racy in about one minute. Failure cases are self-similar, symmetric or planar objects, due
to the non-discriminative power that our point pair feature and point to plane ICP exhibit
in these cases. The multiview refinement step converges if the initialization is sufficiently
close to the minimum and if the pose graph structure actually represent the underlying
topology of the sequence.

6.2. Future work

While implementing the whole pipeline, consisting of preprocessing (0), coarse pairwise
matching and alignment (A), pairwise refinement (B) and multiview refinement (C), we
identified many subproblems that could need some further investigation.

The first step in (0), the segmentation, is based on the assumption of a planar support
surface. It would be nice to develop a segmentation algorithm that allows in-hand scan-
ning, meaning that the object is moved freely in front of the camera in someones hand.
Segmentation could then be done based on skin color or based on the shape of a hand.
This would allow to reconstruct the bottom side of the object, which is normally not recon-
structed because it sits on the surface.

Our complete approach (0,A,B,C) needs a lot of parameters that need to be set correctly,
depending on the data, so that our algorithm converges. We try to leave most of them in
their default values or make them dependent on other parameters, so we don’t have to set
too many of them. The accuracy of the final result is very parameter dependent, as seen in
the last section, but the results don’t necessarily get better the more time one invests. Thus,
it would be really nice if we could determine the best parameters for a given sequence by
ourselves or even adapt them while the algorithm is running. Another option would be to
allow for more interactivity, i.e. asking the user at intermediate stages if the current align-
ment looks already good to him or not. Depending on his answer, we could adapt certain
parameters or try to match to a frame that the user specifies instead of blindly trying to
match to the last nFrames.

Apart from these rather practical problems, we should really improve the running time
of our point pair feature matching algorithm (A), which is the slowest part of the whole
pipeline. A real problem is that it is quadratic in the size of points.

57

6. Summary and outlook

Range images Let us first only consider possible extensions that use only range images
and no additional information. In our algorithm, we downsampled the point clouds in
the beginning and then only worked on these downsampled versions. A straightforward
extension to improve the accuracy is thus to use all the available data instead. The loss
in speed can be counteracted by the use of a coarse-to-fine scheme. However, a certain
degree of downsampling is necessary for our point-pair features to work robustly.

Our normals were obtained from the eigenvectors of a point set PCA. But this PCA
contains even more information through its three eigenvalues in the form of curvature
information that we already computed, but did not use. This information could be used to
augment the point pair feature or prune wrong correspondences. Additionally, curvature
information can be integrated into ICP in various ways. Though this will not help for
totally planar objects, curvature can be used to effectively reduce the size of points to
the most stable ones that usually have high curvature. This geometrically stable sampling
strategy was already done for ICP in [14]. It can also be applied to the matching step of our
point pair features and has the nice side effect to improve its performance, since we have
to consider fewer points, i.e. only the more interesting ones which have high curvature.

Color images A straightforward extension, which became popular with the advent of the
Kinect, is to additionally consider the color images. One may incorporate them into our
point-based geometry approach for selection, matching and pruning of point correspon-
dences. For Point Pair Features (PPFs), this has been done successfully in [6]. Concerning
ICP, there have been various extension to the standard one as well as to GICP to also
include color compatibility, usually based on some color space that is more invariant to
illumination changes than RGB such as HUV or LAB.

Nevertheless, the most successful approaches work on 2D color images directly. These
pixel-based approaches employ an either sparse or dense matching of image patches or
pixels and reduce a photometrical reprojection error. These methods are fast because they
can exploit the organized grid structure of the 2D images. It would be interesting to ex-
tend this idea of organized grid structures from color to range images to improve match-
ing speeds, meaning that we skip the whole backprojection and downsampling steps and
work on the organized range images directly.

Multiview refinement The running times of our multiview refinement stage (C) are very
dependent on the initialization. During the inner Levenberg-Marquardt (LM) iterations,
one has to find a value of λ which decreases the error. The LM implementation in g2o
sometimes took a really long time for these inner iterations, and some other times it was
quite fast. In future work, we are interested to port our own Multiview LM-ICP algo-
rithm written in Matlab, which works well on small problem sizes, to C++ using the Ceres
Solver1 of Agarwal et al. [1], developed originally at Google for the solution of sparse Bun-
dle Adjustment (BA) problems to reconstruct scenes in Google Street View. Since it is used
in production code, it has better documentation, a cleaner and more stable API than g2o
and nice features such as automatic derivatives, which allow to switch the parametrization
of x seamlessly without introducing new errors through wrong Jacobians.

1 http://ceres-solver.org

58

http://ceres-solver.org

A. Core Algorithms

A.1. Point set PCA

Given a set of 3 or more points, which should correspond to the neighborhood of a point
on a surface, one can easily calculate its centroid as well as estimate surface normals and
curvature using Principal Component Analysis (PCA) of point sets as explained in sec-
tion 3.4.

1 void pointSetPCA(const vector<Vector3f>& pts, Vector3f& centroid, Vector3f&

normal, float& curvature){

2
3 assert(pts.size()>=3); //otherwise normals are undetermined

4 Map<const Matrix3Xf> P(&pts[0].x(),3,pts.size());

5
6 centroid = P.rowwise().mean();

7 MatrixXf centered = P.colwise() − centroid;

8 Matrix3f cov = centered * centered.transpose();

9
10 //eigvecs sorted in increasing order of eigvals

11 SelfAdjointEigenSolver<Matrix3f> eig(cov);

12 normal = eig.eigenvectors().col(0); //is already normalized

13 if (normal(2) > 0) normal = −normal; //flip towards camera

14 Vector3f eigVals = eig.eigenvalues();

15 curvature = eigVals(0) / eigVals.sum();

16 }

Listing A.1: Point set PCA (Eigen/C++)

59

A. Core Algorithms

A.2. Point to point ICP

E =
N∑

i=1

||Rpi + t− qi||2 (3.24)

R is a 3 x 3 orthonormal matrix and t is a 3 x 1 translation vector. Following [9][3.1]1 and
[26][Appendix C], minimizingE can be done using SVD. First, one calculates the centroids
of the point sets. p̄ = 1

N

∑N
i=1 pi and q̄ = 1

N

∑N
i=1 qi. Then, we need to center each point in

the sets by subtracting their centroids p̃i = pi − p̄ and q̃i = qi − q̄ ∀i ∈ [1, N]. We define the
correlation matrix K of the centered point sets as the sum of their outer products, which
can also compactly be written as a matrix product of the matrices whose columns are made
up of the centered points:

K =
N∑

i=1

q̃ip̃i
T = Q̃P̃ T , P̃ =



| . . . |
p̃1 . . . p̃N
| . . . |




The singular value decomposition of K is given by K = UΣV T . Then, the optimal rotation
matrix is given as R = UV T and the optimal translation vector as t = q̄ − R · p̄. If R was
actually a reflection (|R| < 0), we need to flip its last column to obtain a rotation [48]. The
basic algorithm was implemented in less then 20 lines of Matlab or C++ Code, which is
provided here.

1 http://graphics.stanford.edu/~smr/ICP/comparison/eggert_comparison_mva97.pdf

60

http://graphics.stanford.edu/~smr/ICP/comparison/eggert_comparison_mva97.pdf

A.2. Point to point ICP

1 function [T] = pointToPoint(src,dst)

2 N = size(src,1); assert(size(dst,1) == N);

3 ps = src';

4 qs = dst'; %ps and qs have 3 rows, N columns

5 p_dash = mean(ps,2);

6 q_dash = mean(qs,2);

7 ps_centered = ps − repmat(p_dash,1,size(ps,2));

8 qs_centered = qs − repmat(q_dash,1,size(qs,2));

9 K = qs_centered * ps_centered';

10 [U,~,V] = svd(K);

11 R = U * V';

12 if(det(R)<0)

13 R(:,3) = R(:,3) * (−1);
14 end

15 T = eye(4);

16 T(1:3,1:3) = R;

17 T(1:3,4) = q_dash − R*p_dash;

18 end

Listing A.2: ICP point to point step (Matlab)

1 Isometry3f pointToPoint(vector<Vector3f>&src,vector<Vector3f>&dst){

2 int N = src.size(); assert(N==dst.size());

3 Map<Matrix3Xf> ps(&src[0].x(),3,N); //maps vector<Vector3f>

4 Map<Matrix3Xf> qs(&dst[0].x(),3,N); //to Matrix3Nf columnwise

5 Vector3f p_dash = ps.rowwise().mean();

6 Vector3f q_dash = qs.rowwise().mean();

7 Matrix3Xf ps_centered = ps.colwise() − p_dash;

8 Matrix3Xf qs_centered = qs.colwise() − q_dash;

9 Matrix3f K = qs_centered * ps_centered.transpose();

10 JacobiSVD<Matrix3f> svd(K, ComputeFullU | ComputeFullV);

11 Matrix3f R = svd.matrixU()*svd.matrixV().transpose();

12 if(R.determinant()<0){

13 R.col(2) *= −1;
14 }

15 Isometry3f T = Isometry3f::Identity();

16 T.linear() = R;

17 T.translation() = q_dash − R*p_dash; return T;

18 }

Listing A.3: ICP point to point step (Eigen/C++)

61

A. Core Algorithms

A.3. Point to plane ICP

E =
N∑

i=1

||(Rpi + t− qi) · nqi ||2 (3.25)

An approximate closed-form solution, based on the assumption of an infinitesimal ro-
tational part (subsection 3.3.4), can be obtained by linearizing R. This approximation
only makes sense for small angles, as are expected in late iterations of the ICP algorithm
[26][Appendix D]. Then E can be rewritten as:

E =
N∑

i=1

||(pi − qi) · nqi + r · (pi × nqi) + t · nqi ||2, r = [rx, ry, rz]
T

We can arrange all the summands into a matrix expression [29] Ax = b, which is an over-
constrained system of linear equations, given N > 6 pairs of point correspondences.

A =




(p1 × nq1)T nTq1
(p2 × nq2)T nTq2

...
...



N×6

, x =

ñ
r
t

ô
6×1

, b = −




(p1 − q1)Tnq1
(p2 − q2)Tnq2

...




N×1

This is a standard linear least-squares problem. Finding the x which minimizes |Ax − b|2
can be done using the pseudo-inverse A† of A. Then, the least-squares solution is sim-
ply given by x = (ATA)−1AT b = A†b. For numerical stability, the pseudo-inverse A† =
V Σ+UT should be computed from the SVD of A = UΣV T , where the diagonal matrix Σ+

is the matrix formed by taking the inverse of the non-zero elements of the diagonal matrix
Σ and leaving the zero elements unchanged [29].2

Another way to solve this linear least-squares problem is to solve the normal equations
ATAx = AT b directly. This is even faster, since we don’t need to compute an SVD, and
also numerically stable. We define C6×6 = ATA, d6×1 = AT b and simply solve

Cx = d⇔ ATAx = AT b

via Cholesky decomposition of the positive semidefinite matrix C. Interestingly, this result
for C can also be derived by setting the partial derivatives of C with respect to the six
degrees of freedom [t, r]T to zero.3 Using symbolic calculations, we checked that C, d are
of exactly the same form as in the lengthly derivation in [26][Appendix D]. Our Eigen/C++
implementation of this method follows.

2 https://www.comp.nus.edu.sg/~lowkl/publications/lowk_point-to-plane_icp_
techrep.pdf

3 http://www.cs.princeton.edu/~smr/papers/icpstability.pdf

62

https://www.comp.nus.edu.sg/~lowkl/publications/lowk_point-to-plane_icp_techrep.pdf
https://www.comp.nus.edu.sg/~lowkl/publications/lowk_point-to-plane_icp_techrep.pdf
http://www.cs.princeton.edu/~smr/papers/icpstability.pdf

A.3. Point to plane ICP

1 Isometry3f pointToPlane(vector<Vector3f> &src,vector<Vector3f> &dst,vector<

Vector3f> &nor){

2 assert(src.size()==dst.size() && src.size()==nor.size());

3 Matrix<float,6,6> C; C.setZero();

4 Matrix<float,6,1> d; d.setZero();

5
6 for(uint i=0;i<src.size();++i){

7 Vector3f cro = src[i].cross(nor[i]);

8 C.block<3,3>(0,0) += cro*cro.transpose();

9 C.block<3,3>(0,3) += nor[i]*cro.transpose();

10 C.block<3,3>(3,3) += nor[i]*nor[i].transpose();

11 float sum = (src[i]−dst[i]).dot(nor[i]);
12 d.head(3) −= cro*sum;

13 d.tail(3) −= nor[i]*sum;

14 }

15 C.block<3,3>(3,0) = C.block<3,3>(0,3);

16
17 Matrix<float,6,1> x = C.ldlt().solve(d);

18 Isometry3f T = Isometry3f::Identity();

19 T.linear() = (AngleAxisf(x(0), Vector3f::UnitX())

20 * AngleAxisf(x(1), Vector3f::UnitY())

21 * AngleAxisf(x(2), Vector3f::UnitZ())

22).toRotationMatrix();

23 T.translation() = x.block(3,0,3,1);

24 return T;

25 }

Listing A.4: ICP point to plane step (Eigen/C++)

63

A. Core Algorithms

A.4. LM-ICP

We implemented Levenberg-Marquardt ICP (LM-ICP) to solve the point to point distance
metric with the squared loss, although other distance and loss functions can be easily inte-
grated.

E =
N∑

i=1

||Rpi + t− qi||2 (3.24)

At each iteration, we need to compute the Levenberg update step to the transformation
estimate:

x = −(JTJ + λI)−1JT e (3.37)

For these transformation updates x inside the inner loop, we use a minimal represen-
tation of SE(3) given by its twist coordinates ξ. These also have the advantage that their
jacobians (3.9) have quite a nice form.

Fortunately, matrix exponentiation exp (3.8) is already implemented in Matlab as the
expm function. That means we only have to implement the hat operator, which turns
twist coordinates ξ ∈ R6, into a twist ξ̂ ∈ se(3), and then call expm on that matrix to get
the transformation matrix T = exp(ξ̂) ∈ SE(3) which we need to transform the points.

1 function [T] = se3Exp(xi)

2 xi_hat = [0 −xi(6) xi(5) xi(1);

3 xi(6) 0 −xi(4) xi(2);

4 −xi(5) xi(4) 0 xi(3);

5 0 0 0 0];

6 T = expm(xi_hat);

7 end

Listing A.5: Twist coordinates to transformation matrix (Matlab)

We initialize λwith 1 and adapt it at each step by multiplying or dividing it with a factor
of 10. Convergence is achieved when λ gets large, or equivalently, when the gradient gets
small. There are also other possible convergence criteria based on the change in error,
but the one above worked fine and convergence was achieved in about 5 steps in general,
much less than the maximum iteration threshold of 100. The residual vector as well as
the jacobian are directly computed in their stacked form. The transformation matrices we
obtained were approximately the same as in the closed form solution A.2, up to differences
of 10−7.

64

A.4. LM-ICP

1 function T = pointToPoint_lm_twists(src, dst)

2 N = size(src,1); assert(size(dst,1) == N);

3 T = eye(4); x_hat=src; lambda=1;

4
5 for i = 1:100

6 %stack distance vectors into residual vector

7 e = reshape((x_hat − dst)',[3*N,1]);

8
9 %stack Jacobian

10 J = zeros(3*N,6); O = zeros(N,1); I = ones(N,1);

11 x1 = x_hat(:,1); x2 = x_hat(:,2); x3 = x_hat(:,3);

12 J(1:3:3*N,:) = [I O O O x3 −x2];
13 J(2:3:3*N,:) = [O I O −x3 O x1];

14 J(3:3:3*N,:) = [O O I x2 −x1 O];

15
16 b = (J' * e); %gradient

17
18 if(max(abs(b))< 0.00001)

19 break; %convergence in gradient, lambda is big

20 end

21
22 %Levenberg step

23 upd = −(J' * J + lambda*eye(6))^(−1) * b;

24
25 %compute new residual vector

26 T_new = se3Exp(upd) * T; %exponential map left multiply

27 R = T_new(1:3,1:3); t = T_new(1:3,4);

28 x_hat_new = (R*src' + repmat(t,1,N))'; %project

29 e_test = reshape((x_hat_new − dst)',[3*N,1]);

30
31 %test if we reduced the error (sum of squared residuals)

32 if(e_test'*e_test < e'*e) %error reduced

33 T = T_new; x_hat = x_hat_new; %accept update

34 lambda = lambda / 10; %towards Gauss−Newton
35 else %error increased, discard update

36 lambda = lambda * 10; %towards gradient descent

37 end

38 end

Listing A.6: LM-ICP point to point step (Matlab)

65

Bibliography

[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://ceres-solver.
org.

[2] K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-squares fitting of
two 3-d point sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (5):
698–700, 1987.

[3] Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern
recognition, 13(2):111–122, 1981.

[4] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Robotics-DL
tentative, pages 586–606. International Society for Optics and Photonics, 1992.

[5] Yang Chen and Gérard Medioni. Object modeling by registration of multiple range
images. In Robotics and Automation, 1991. Proceedings., 1991 IEEE International Confer-
ence on, pages 2724–2729. IEEE, 1991.

[6] Changhyun Choi and Henrik I Christensen. 3d pose estimation of daily objects using
an rgb-d camera. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 3342–3349. IEEE, 2012.

[7] James Diebel. Representing attitude: Euler angles, unit quaternions, and rotation
vectors. Matrix, 58:15–16, 2006.

[8] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. Model globally,
match locally: Efficient and robust 3d object recognition. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages 998–1005. IEEE, 2010.

[9] David W Eggert, Adele Lorusso, and Robert B Fisher. Estimating 3-d rigid body trans-
formations: a comparison of four major algorithms. Machine Vision and Applications, 9
(5-6):272–290, 1997.

[10] Felix Endres, Jürgen Hess, Nikolas Engelhard, Jürgen Sturm, Daniel Cremers, and
Wolfram Burgard. An evaluation of the rgb-d slam system. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 1691–1696. IEEE, 2012.

[11] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In Computer Vision–ECCV 2014, pages 834–849. Springer, 2014.

[12] Simone Fantoni, Umberto Castellani, and Andrea Fusiello. Accurate and automatic
alignment of range surfaces. In 3DIMPVT, pages 73–80. Citeseer, 2012.

[13] Andrew W Fitzgibbon. Robust registration of 2d and 3d point sets. Image and Vision
Computing, 21(13):1145–1153, 2003.

67

http://ceres-solver.org
http://ceres-solver.org

Bibliography

[14] Natasha Gelfand, Leslie Ikemoto, Szymon Rusinkiewicz, and Marc Levoy. Geometri-
cally stable sampling for the icp algorithm. In 3-D Digital Imaging and Modeling, 2003.
3DIM 2003. Proceedings. Fourth International Conference on, pages 260–267. IEEE, 2003.

[15] Claus Gramkow. On averaging rotations. Journal of Mathematical Imaging and Vision,
15(1-2):7–16, 2001.

[16] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition, 2004.

[17] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation averaging.
International journal of computer vision, 103(3):267–305, 2013.

[18] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt Konolige,
Nassir Navab, and Vincent Lepetit. Multimodal templates for real-time detection of
texture-less objects in heavily cluttered scenes. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 858–865. IEEE, 2011.

[19] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski,
Kurt Konolige, and Nassir Navab. Model based training, detection and pose estima-
tion of texture-less 3d objects in heavily cluttered scenes. In Computer Vision–ACCV
2012, pages 548–562. Springer Berlin Heidelberg, 2013.

[20] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
Surface reconstruction from unorganized points. In COMPUTER GRAPHICS (SIG-
GRAPH ’92 PROCEEDINGS), volume 26, pages 71–78. ACM, 1992.

[21] Berthold KP Horn. Closed-form solution of absolute orientation using unit quater-
nions. JOSA A, 4(4):629–642, 1987.

[22] Berthold KP Horn, Hugh M Hilden, and Shahriar Negahdaripour. Closed-form so-
lution of absolute orientation using orthonormal matrices. JOSA A, 5(7):1127–1135,
1988.

[23] Andrew E. Johnson and Martial Hebert. Using spin images for efficient object recogni-
tion in cluttered 3d scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 21(5):433–449, 1999.

[24] Michael Jones and Paul Viola. Fast multi-view face detection. Mitsubishi Electric Re-
search Lab TR-20003-96, 3:14, 2003.

[25] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Dense visual slam for rgb-d cam-
eras. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pages 2100–2106. IEEE, 2013.

[26] Hans Martin Kjer and Jakob Wilm. Evaluation of surface registration algorithms for
pet motion correction. Bachelor’s thesis, Technical University of Denmark, 2010.

[27] Georg Klein and David Murray. Parallel tracking and mapping for small ar
workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM
International Symposium on, pages 225–234. IEEE, 2007.

68

Bibliography

[28] Rainer Kummerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Bur-
gard. g 2 o: A general framework for graph optimization. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 3607–3613. IEEE, 2011.

[29] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp surface regis-
tration. Chapel Hill, University of North Carolina, 2004.

[30] Y. Ma, S. Soatto, J. Kosecká, and S.S. Sastry. An Invitation to 3-D Vision: From Images to
Geometric Models. Interdisciplinary Applied Mathematics. Springer New York, 2005.
ISBN 9780387008936.

[31] F Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman. Averag-
ing quaternions. Journal of Guidance, Control, and Dynamics, 30(4):1193–1197, 2007.

[32] Ajmal S Mian, Mohammed Bennamoun, and Robyn A Owens. Automatic correspon-
dence for 3d modeling: an extensive review. International Journal of Shape Modeling, 11
(02):253–291, 2005.

[33] Ajmal S Mian, Mohammed Bennamoun, and Robyn Owens. Three-dimensional
model-based object recognition and segmentation in cluttered scenes. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 28(10):1584–1601, 2006.

[34] Niloy J Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas Guibas. Registra-
tion of point cloud data from a geometric optimization perspective. In Proceedings of
the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 22–
31. ACM, 2004.

[35] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In Mixed
and augmented reality (ISMAR), 2011 10th IEEE international symposium on, pages 127–
136. IEEE, 2011.

[36] Mark Pauly, Markus Gross, and Leif P Kobbelt. Efficient simplification of point-
sampled surfaces. In Proceedings of the conference on Visualization’02, pages 163–170.
IEEE Computer Society, 2002.

[37] William H Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge
university press, 2007.

[38] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In 3-D
Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on, pages
145–152. IEEE, 2001.

[39] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3d model acquisi-
tion. In ACM Transactions on Graphics (TOG), pages 438–446. ACM, 2002.

[40] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms
(fpfh) for 3d registration. In Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pages 3212–3217. IEEE, 2009.

69

Bibliography

[41] Renato F Salas-Moreno, Richard A Newcombe, Hauke Strasdat, Paul HJ Kelly, and
Andrew J Davison. Slam++: Simultaneous localisation and mapping at the level of
objects. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pages 1352–1359. IEEE, 2013.

[42] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In Robotics:
Science and Systems, volume 2, 2009.

[43] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski.
A comparison and evaluation of multi-view stereo reconstruction algorithms. In Com-
puter vision and pattern recognition, 2006 IEEE Computer Society Conference on, volume 1,
pages 519–528. IEEE, 2006.

[44] Miroslava Slavcheva. Unified pipeline for 3d reconstruction from rgb-d images using
coloured truncated signed distance fields. Master’s thesis, Technische Universität
München.

[45] Frank Steinbrucker, Jürgen Sturm, and Daniel Cremers. Real-time visual odometry
from dense rgb-d images. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on, pages 719–722. IEEE, 2011.

[46] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cre-
mers. A benchmark for the evaluation of rgb-d slam systems. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 573–580. IEEE, 2012.

[47] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures of his-
tograms for local surface description. In Computer Vision–ECCV 2010, pages 356–369.
Springer, 2010.

[48] Shinji Umeyama. Least-squares estimation of transformation parameters between
two point patterns. IEEE Transactions on pattern analysis and machine intelligence, 13(4):
376–380, 1991.

[49] Michael W Walker, Lejun Shao, and Richard A Volz. Estimating 3-d location parame-
ters using dual number quaternions. CVGIP: image understanding, 54(3):358–367, 1991.

[50] Zhengyou Zhang. Iterative point matching for registration of free-form curves and
surfaces. International journal of computer vision, 13(2):119–152, 1994.

[51] Timo Zinßer, Jochen Schmidt, and Heinrich Niemann. Point set registration with inte-
grated scale estimation. In Vortrag: Eighth International Conference on Pattern Recogni-
tion and Image Processing, Belarusian State University of Informatics and Radioelectronics,
International Association for Pattern Recognition, Minsk, Belarus, volume 18, 2005.

70

	Acknowledgments
	Abstract
	Abbreviations
	Introduction
	Previous work
	3D object recognition
	3D object reconstruction
	Multiview refinement

	Background
	Range images
	Pinhole camera model
	Rigid body motion
	Rotation and transformation matrices
	Unit quaternions
	Lie algebra of twists
	Infinitesimal rotations

	Principal component analysis
	Normal estimation
	Curvature estimation

	Nearest neighbor search
	Exhaustive search
	k-d tree
	Distance transform
	Projection-based matching

	Iterative Closest Points
	Taxonomy
	Point to point
	Point to plane
	Generalized ICP
	Levenberg-Marquardt ICP

	Approach
	Preprocessing
	Backprojection
	Segmentation
	Downsampling
	Denoising
	Normal and curvature estimation

	Pairwise coarse alignment
	Point pair feature
	Learning
	Matching
	Pose clustering and averaging

	Pairwise refinement
	Correspondences
	Transformation

	Multiview refinement
	Global registration error
	Sparsity structure of the linearized system
	Pose graph optimization

	Evaluation
	Datasets
	Qualitative results
	Discussion

	Quantitative results
	Discussion

	Summary and outlook
	Conclusion
	Future work

	Appendix
	Core Algorithms
	Point set PCA
	Point to point ICP
	Point to plane ICP
	LM-ICP

	Bibliography

