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PPF: Point Pair Feature

F = (F1,F2,F3,F4) = (||d ||2,∠(n1,d),∠(n2,d),∠(n1,n2)) (1)
PPF

Drost (2010)
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PPF: 6DoF pose estimate by aligning 2 PPF’s

Drost (2010)
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3D object reconstruction: in-hand scanning

correspondences between the model and scene based on an
invariant surface property such as curvature. Given a
sufficient number of correspondences, the relative pose
between model and scene can be estimated. If the
registration error is small enough, the object is declared
recognized. One approach to establishing model-scene
correspondences is to use point signatures, which encode
local surface properties in a data structure that facilitates
efficient correspondence search and comparison. Proposed
encodings include spin-images [1], splashes [3], point
signatures [4], harmonic shape images [5], spherical
attribute images [6], and the tripod-operator [7]. An
alternative approach is to explicitly detect extended
features, such as curves of maximal curvature [8], intersec-
tions of planar regions [9], or bitangent-curves [10], and
match them between model and scene.

In our system, we use a modified version of Johnson’s
spin-image surface matching algorithm to perform initial
pair-wise matching in the local registration phase [1,11,12].
The algorithm is fast, matching two views in 1.5 s, does not
require any explicit feature detection, and is robust to holes
in the surfaces, which frequently occur when using range
image data.

Pair-wise registration algorithms improve upon an initial
relative pose estimate by minimizing an objective measure
of registration error. The initial relative pose can be
provided by a surface matching algorithm, by manual
registration, or by the data acquisition system. The dominant

method in this category is the iterative closest point (ICP)
algorithm, which repeatedly updates the relative pose by
minimizing the sum of squared distances between closest
points on the two surfaces (point-to-point matching) [13].
Chen and Medioni proposed a similar method in which the
distance between points and tangent planes is minimized
instead (point-to-plane matching) [14]. Rusinkiewicz’
survey of ICP variants provides an elegant taxonomy and
unifying framework for comparing the numerous extensions
to the basic algorithm [15].

In our system, we use pair-wise registration in the local
registration phase to improve pair-wise matches. We have
experimented with point-to-point and point-to-plane match-
ing and found that point-to-point matching tends to prevent
surfaces from sliding relative to one another, leading to
slower convergence in many cases. Therefore, we use the
point-to-plane matching method. In practice, we use
Neugebauer’s multi-view registration algorithm for pair-
wise registration (see below) [16]. In the two view case, his
algorithm essentially reduces to Chen and Medioni’s [14].

Multi-view registration algorithms minimize registration
error over an entire network of overlapping views,
optimizing the absolute pose parameters of all views.
These algorithms require an initial estimate of either the
absolute or relative poses. In 3D digitization, multi-view
registration is normally used as a final step to improve the
overall model quality or as a method for converting
from relative poses to absolute poses. A wide variety of

Fig. 3. Hand-held modeling, a 3D digitization application. Holding the object before a laser scanner (left), we obtain 3D data from various viewpoints (center),

and automatically construct a digital version of the original object (right). The challenge lies in the uncontrolled poses and arbitrary order of views.

Fig. 2. A block diagram showing the two phases of our multi-view surface matching algorithm. The local phase takes an unordered set of input views and

performs pair-wise surface matching, outputting a set of matches. The global phase searches this set of matches for a globally consistent solution, outputting the
transforms that place the views in a common coordinate system (shown here with respect to view 1).

D.F. Huber, M. Hebert / Image and Vision Computing 21 (2003) 637–650 639

correspondences between the model and scene based on an
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The algorithm is fast, matching two views in 1.5 s, does not
require any explicit feature detection, and is robust to holes
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image data.

Pair-wise registration algorithms improve upon an initial
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minimizing the sum of squared distances between closest
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Chen and Medioni proposed a similar method in which the
distance between points and tangent planes is minimized
instead (point-to-plane matching) [14]. Rusinkiewicz’
survey of ICP variants provides an elegant taxonomy and
unifying framework for comparing the numerous extensions
to the basic algorithm [15].

In our system, we use pair-wise registration in the local
registration phase to improve pair-wise matches. We have
experimented with point-to-point and point-to-plane match-
ing and found that point-to-point matching tends to prevent
surfaces from sliding relative to one another, leading to
slower convergence in many cases. Therefore, we use the
point-to-plane matching method. In practice, we use
Neugebauer’s multi-view registration algorithm for pair-
wise registration (see below) [16]. In the two view case, his
algorithm essentially reduces to Chen and Medioni’s [14].
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optimizing the absolute pose parameters of all views.
These algorithms require an initial estimate of either the
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registration is normally used as a final step to improve the
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Fig. 3. Hand-held modeling, a 3D digitization application. Holding the object before a laser scanner (left), we obtain 3D data from various viewpoints (center),

and automatically construct a digital version of the original object (right). The challenge lies in the uncontrolled poses and arbitrary order of views.

Fig. 2. A block diagram showing the two phases of our multi-view surface matching algorithm. The local phase takes an unordered set of input views and

performs pair-wise surface matching, outputting a set of matches. The global phase searches this set of matches for a globally consistent solution, outputting the
transforms that place the views in a common coordinate system (shown here with respect to view 1).
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Huber (2003)
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3D object reconstruction: tabletop scanning
2 KEHL ET AL.: COLOURED SDFS FOR FULL 3D OBJECT RECONSTRUCTION

Figure 1: The pipeline visualised. Each scan sequence is masked, pose-optimised and fused
to create a model. Then all scans get aligned to one coherent model.

displacement of objects during scanning. As a result, incomplete object geometry is usually
obtained with the bottom or some self-occluded parts missing from the reconstruction.

The overall trend and need in robotics and computer vision goes towards unsupervised,
automatic and/or autonomous methods which try to reduce human input to create precise,
fully coloured 3D meshed models. We therefore propose a framework, combining the
strengths of related approaches, to fully automate 3D reconstructions and produce high-
quality textured 3D models from low-cost RGB-D sensors.

We present a full 3D reconstruction pipeline combining visual odometry and KinectFu-
sion ideas. Initially, we rely on visual odometry [4, 24] to compute the camera trajectory on
a foreground-segmented sequence. As output we obtain a number of keyframes with precise
camera poses and associated 3D data clouds. We then cast them into signed distance fields
and integrate them into one common field, following [23, 27], while also solving for the
colour component. We then displace the object to expose its previously hidden geometry
and repeat proposed procedure to obtain multiple scans of the object in form of coloured
SDFs (CSDF). Thereafter, we propose a novel automatic registration framework to robustly
fuse multiple CSDFs into one coherent model. See Figure 1 for a visualisation. We evaluated
on multiple diverse real-life objects to show the capabilities and precision of our approach.
We compared with KinectFusion both qualitatively and quantitatively. For smaller and rather
symmetric objects our method succeeded while KinectFusion failed. We were always able to
recover the full textured geometries. Comparison with ground truth CAD data also revealed
our superior metrical precision even with geometries that are distinctive enough for proper
KinectFusion tracking.

1.1 Related work

3D object reconstruction with range data is widely covered in the literature together with a
good overview given in [1]. One can usually roughly divide the literature up into a stationary
set-up where the object sits on top of a (rotating) support surface and a dynamic set-up where
the object of interest is scanned in-hand.

Kehl (2014)
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ICP: Iterative Closest Points
iterate:

1 compute correspondences {pi → qi}N1
2 update current transformation g = (R, t) ∈ SO(3)

Previous Work and Background 3D object reconstruction



ICP: point to point

pointOtoOpoint pointOtoOplane

Eurographics 2012, Cagliari, Italy

Point-to-Plane Error Metric

19

point to point distance

E =
N∑

i=1

||Rpi + t − qi ||2 (2)
point to point

Besl and McKay (1992), Zhang (1994)
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ICP: point to plane

pointOtoOpoint pointOtoOplane

Eurographics 2012, Cagliari, Italy

Point-to-Plane Error Metric

19

point to plane distance

E =
N∑

i=1

||(Rpi + t − qi) · nqi ||2 (3)
point to plane

Chen and Medioni (1991)
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ICP: Levenberg-Marquardt ICP

Solve

E(g) =
N∑

i=1

||ei ||2

iteratively
gk+1 = gk + x

via nonlinear least-squares techniques

x = −(JT J + λI)−1JT e (4)
Levenberg step

Fitzgibbon (2003)

Previous Work and Background 3D object reconstruction
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Multiview refinement

Multiview Levenberg-Marquardt ICP (Fantoni et al. (2012))
modeled as pose graph optimization (SLAM context)
sparsity needs to be exploited for efficiency
solved with the g2o framework (Kümmerle et al. (2011))

Previous Work and Background Multiview refinement
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Pairwise coarse alignment

Consists of three substeps
1 Learning
2 Matching
3 Pose clustering and averaging

Approach Pairwise coarse alignment



Learning: compute O(N2) PPF’s

N × (N − 1) PPF’s F ∈ R4

Approach Pairwise coarse alignment



Learning: quantization and storage

quantizePPF (F , δ, θ) = (b ||d ||2
δ
c, b∠(n1,d)

θ
c, b∠(n2,d)

θ
c, b∠(n1,n2)

θ
c)

Approach Pairwise coarse alignment



Matching: intersect 2 sorted lists

Approach Pairwise coarse alignment



Matching: Intermediate Coordinate System

Tm→s = T−1
s→gRx (α)Tm→g

Approach Pairwise coarse alignment



Matching: Voting Scheme

Accumulator space A: list of |Ns| matrices M |N
m|×| 360◦

θ
|

v ← max(A(is))

im, iα ← argmax(A(is))

Pis = T−1
is→gRx ((iα + 0.5) ∗ θ)Tim→g

Approach Pairwise coarse alignment



Pose clustering and averaging

clustering:
sort poses by their votes
agglomerative clustering (bottom up)
complete linkage criterium :
d(K(i),K(j)) = max{d(Pi ,Pj),Pi ∈
K(i),Pj ∈ K(j)}

averaging:
sum up votes
translation: Euclidean mean
rotation: quaternion mean
return cluster average with highest number of votes

Approach Pairwise coarse alignment
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Pairwise refinement

precomputed kd-tree

median splits the resulting tree

A k-d tree of (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)

point to plane ICP

Approach Pairwise refinement



Pairwise refinement: ICP example 1
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Pairwise refinement: ICP example 2
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Pairwise refinement: ICP example 3
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Pairwise refinement: ICP example 4
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Pairwise refinement: ICP example 5
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Pairwise refinement: ICP example 6
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Pairwise refinement: ICP example 7
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Pairwise refinement: ICP example 8
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Pairwise refinement: ICP example 9
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Pairwise refinement: ICP example 10
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Pairwise refinement: ICP example 11
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Pairwise refinement: reconstruction 1
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Pairwise refinement: reconstruction 2
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Multiview refinement

relative→ absolute pose graph
add knn nearest poses
closes loops

Approach Multiview refinement



Multiview refinement: reconstruction 2
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Multiview refinement: reconstruction 3
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Multiview refinement

E(g1, ...gM) =
M∑

h=1

M∑

k=1

A(h, k)

Nh∑

i=1

||d(gh(ph
i ),gk (qh

i ))||2 (5)

A : graph adjacency matrix
Multiview LM-ICP modeled as a graph in g2o
error minimized using LM / Dogleg

Approach Multiview refinement



Multiview refinement: reconstruction 3

Approach Multiview refinement



Multiview refinement: reconstruction 4

Approach Multiview refinement
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Evaluation
Stages:

0 A B C
preproc. pairwise align. pairwise refin. multiview refin.

Metrics:
The relative pose error at time step i with interval width ∆:

Ei,∆ := (Q−1
i Qi+∆)−1(P−1

i Pi+∆)−1 (RPE)

The absolute trajectory error at time step i:

Fi := Q−1
i SPi (ATE)

{P1, · · · ,Pn}︸ ︷︷ ︸
estimates

, {Q1, · · · ,Qn}︸ ︷︷ ︸
groundtruth

∈ SE(3)

Evaluation
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bunny2
Evaluation real data



bench vise -step 15
Evaluation real data



sequence
S

RPE [mm/%] ATE [mm/%]
params rms mean std rms mean std

bunny2

A 32.311 28.996 14.254 74.097 68.679 27.812
↓ 88 89 85 91 92 89
B 3.936 3.330 2.098 6.610 5.803 3.165
↓ 15 14 17 21 15 47
C 3.344 2.859 1.735 5.212 4.932 1.685

bench vise
-step 15

A 72.998 67.519 27.747 215.475 184.514 111.283
↓ 83 85 74 76 75 78
B 12.287 9.979 7.168 52.579 46.602 24.346
↓ 26 23 34 59 58 62
C 9.031 7.676 4.758 21.737 19.662 9.270

Evaluation real data



Speed vs. accuracy on bunny2 : The distance sampling rate τd is modified

Evaluation real data
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bunny sphere -knn 5 -nFrames 5
Evaluation synthetic data



juice box wavy -step 3
Evaluation synthetic data



Kenny wavy -step 5 -diamM 0.4 -knn 4
Evaluation synthetic data



sequence
S

RPE [mm/%] ATE [mm/%]
params rms mean std rms mean std

bunny sphere
-knn 5
-nFrames 5

A 65.799 54.217 37.283 125.697 108.222 63.937
↓ 69 69 70 76 76 78
B 20.212 16.833 11.189 29.737 26.353 13.776
↓ 34 35 33 58 57 61
C 13.278 10.929 7.540 12.445 11.256 5.309

juice box
wavy
-step 3

A 124.981 39.776 118.482 520.406 442.792 273.418
↓ 3 21 1 2 1 4
B 121.612 31.256 117.526 511.973 438.984 263.457
↓ -1 -0 -1 0 1 -2
C 122.356 31.375 118.265 509.811 433.165 268.841

Kenny wavy
-step 5
-diamM 0.4
-knn 4

A 146.957 137.339 52.292 478.807 467.906 101.589
↓ 86 89 76 90 92 74
B 20.004 15.523 12.618 46.516 38.589 25.973
↓ 12 15 7 26 25 28
C 17.619 13.126 11.753 34.490 29.064 18.571

Evaluation synthetic data



Speed vs. accuracy on bunny sphere -knn 06 : The number nFrames of
frames to match to during the coarse pairwise alignment is modified

Evaluation synthetic data



Speed vs. accuracy on bunny sphere -nFrames 06 : The number of knn
nearest neighbors to add to the pose graph before multiview refinement is
modified

Evaluation synthetic data
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Conclusion

reconstruct small objects
from a few range images
in about 1 minute

need variation in geometry

need to find right set of parameters
so that accuracy improves in each step

Summary



Future work

reduce number of parameters
use curvature to speedup PPF matching
use color for robustness
Ceres Solver for multiview refinement→ Master’s thesis

Summary



Dec. 12, 2014 Adrian Haarbach

Summary



Dec. 12, 2014 Adrian Haarbach

Summary



Backup slides

Backup slides



Point set PCA

Cov(P) =
1
P

P∑

i=1

(pi − p̄)(pi − p̄)T = C,C ∈ R3×3

e1,e2,e3 ∈ R3 (6)
eigenvectors(C)

λ1 > λ2 > λ3 ∈ R (7)
eigenvalues(C)

n({pi}) = −sign(e3,z)
e3

||e3||
(8)

normal

σ({pi}) =
λ1

λ1 + λ2 + λ3
(9)curvature
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ICP: Generalized ICP

Fig. 1. illustration of plane-to-plane

a sampled 2-manifold in 3-space. Since real-world surfaces
are at least piece-wise differentiable, we can assume that our
dataset is locally planar. Furthermore, since we are sampling
the manifold from two different perspectives, we will not in
general sample the exact same point (i.e. the correspondence
will never be exact). In essence, every measured point only
provides a constraint along its surface normal. To model this
structure, we consider each sampled point to be distributed
with high covariance along its local plane, and very low
covariance in the surface normal direction. In the case of a
point with e1 as its surface normal, the covariance matrix
becomes 0

@
✏ 0 0
0 1 0
0 0 1

1
A

where ✏ is a small constant representing covariance along the
normal. This corresponds to knowing the position along the
normal with very high confidence, but being unsure about its
location in the plane. We model both ai and bi as being drawn
from this sort of distribution.

Explicitly, given µi and ⌫i – the respective normal vectors at
bi and ai – CB

i and CA
i are computed by rotating the above

covariance matrix so that the ✏ term represents uncertainty
along the surface normal. Letting Rx denote one of the
rotations which transform the basis vector e1 ! x, set

CB
i = Rµi

·

0
@

✏ 0 0
0 1 0
0 0 1

1
A · RT

µi

CA
i = R⌫i ·

0
@

✏ 0 0
0 1 0
0 0 1

1
A · RT

⌫i

The transformation, T, is then computed via (2).
Fig. 1 provides an illustration of the effect of the algorithm

in an extreme situation. In this case all of the points along the
vertical section of the green scan are incorrectly associated
with a single point in the red scan. Because the surface
orientations are inconsistent, plane-to-plane will automatically
discount these matches: the final summed covariance matrix
of each correspondence will be isotropic and will form a very
small contribution to the objective function relative to the thin
and sharply defined correspondence covariance matrices. An
alternative view of this behavior is as a soft constraint for each
correspondence. The inconsistent matches allow the red scan-
point to move along the x-axis while the green scan-points are

free to move along the y-axis. The incorrect correspondences
thus form very weak and uninformative constraints for the
overall alignment.

Computing the surface covariance matrices requires a sur-
face normal associated with every point in both scans. There
are many techniques for recovering surface normals from point
clouds, and the accuracy of the normals naturally plays an
important role in the performance of the algorithm. In our
implementation, we used PCA on the covariance matrix of the
20 closest points to each scan point. In this case the eigen-
vector associated with the smallest eigenvalue corresponds
with the surface normal. This method is used to compute
the normals for both point-to-plane and Generalized-ICP. For
Generalized-ICP, the rotation matrices are constructed so that
the ✏ component of the variance lines up with the surface
normal.1

IV. RESULTS

We compare all three algorithms to test performance of the
proposed technique. Although efficient closed form solutions
exist for T in standard ICP, we implemented the minimization
with conjugate gradients to simplify comparison. Performance
is analyzed in terms of convergence to the correct solution after
a known offset is introduced between the two scans. We limit
our tests to a maximum of 250 iterations for standard ICP, and
50 iterations for the other two algorithms since convergence
was typically achieved before this point (if at all).

Both simulated (Fig. 3) and real (Fig. 4) data was used in or-
der to demonstrate both theoretical and practical performance.
The simulated data set also allowed tests to be performed on
a wider range of environments with absolutely known ground
truth. The outdoor simulated environment differs from the
collected data primarily in the amount of occlusion presented,
and in the more hilly features of the ground plane. The real-
world outdoor tests also demonstrate performance with more
detailed features and more representative measurement noise.

Simulated data was generated by ray-tracing a SICK scanner
mounted on a rotating joint. Two 3D environments were
created to test performance against absolute ground truth both
in the indoor (Fig. 2(a)) and an outdoor (Fig. 2(b)) scenario.
The indoor environment was based on an office hallway,
while the outdoor setting reflects a typical landscape around a
building. In both cases, we simulated a laser-scanner equipped
robot traveling along a trajectory and taking measurements at
fixed points along the path. Gaussian noise was added to make
the tests more realistic.

Tests were also performed on real data from the logs of
an instrumented car. The logs included data recorded by a
roof-mounted Velodyne range finder as the car made a loop
through a suburban environment and were annotated with GPS
and IMU data. This made it possible to apply a pairwise
constraint-based SLAM technique to generate ground truth

1In our implementation we compute these transformations by considering
the eigen decomposition of the empirical covariance of the 20 closest points,
⌃̂ = UDUT . We then use U in place of the rotation matrix (in effect
replacing D with diag(✏, 1, 1) to get the final surface-aligned matrix).

plane to plane distance

E =
N∑

i=1

f (pi ,qi ,npi ,nqi ) (10)
plane to plane

Segal et al (2009)
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Pumba -diamM 0.07 -step 15 -knn 4 -dmax 0.05
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sequence
S

RPE [mm/%] ATE [mm/%]
params rms mean std rms mean std
Pumba
-diamM 0.07
-step 15
-knn 4
-dmax 0.05

A 111.926 90.269 66.172 367.296 337.233 145.534
↓ 83 84 81 74 72 82
B 19.295 14.810 12.367 96.967 93.496 25.710
↓ -12 -8 -17 -16 -17 -14
C 21.519 15.982 14.411 112.917 109.038 29.342
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cow wavy -step 5
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leopard wavy -step 5 -diamM 0.3 -knn 4
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teddy abrupt -nFrames 5 -knn 4 -diamM 0.5
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sequence
S

RPE [mm/%] ATE [mm/%]
params rms mean std rms mean std

cow wavy
-step 5

A 38.893 32.589 21.228 78.353 71.332 32.418
↓ 87 88 86 86 86 87
B 4.915 3.947 2.929 10.674 9.814 4.196
↓ 18 29 2 50 51 46
C 4.021 2.803 2.883 5.301 4.789 2.273

leopard wavy
-step 5
-diamM 0.3
-knn 4

A 36.106 33.840 12.590 70.558 62.355 33.019
↓ 82 83 74 87 87 88
B 6.569 5.671 3.314 9.335 8.415 4.041
↓ 15 28 -15 43 43 43
C 5.594 4.109 3.796 5.280 4.756 2.292

teddy abrupt
-nFrames 5
-knn 4
-diamM 0.5

A 73.390 59.036 43.599 274.761 255.011 102.287
↓ 82 81 84 86 86 82
B 13.423 11.397 7.091 39.428 35.027 18.102
↓ 33 30 40 50 48 56
C 9.028 7.976 4.230 19.715 18.059 7.908
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