

3D Object Reconstruction using Point Pair Features Bachelor's thesis final

Adrian Haarbach

CAMP

March 20th, 2015

1 Introduction

2 Previous Work and Background

3 Approach

4 Evaluation

Introduction

Components of the 3D modeling process

Range image integration

Introduction

1 Introduction

2 Previous Work and Background

3 Approach

4 Evaluation

1 Introduction

Previous Work and Background
 3D object recognition
 3D object reconstruction
 Multiview refinement

3 Approach

4 Evaluation

5 Summary

PPF: Point Pair Feature

 $F = (F_1, F_2, F_3, F_4) = (||d||_2, \angle (n_1, d), \angle (n_2, d), \angle (n_1, n_2))$ (1) PPF

Drost (2010)

PPF: 6DoF pose estimate by aligning 2 PPF's

Drost (2010)

Previous Work and Background

3D object recognition

1 Introduction

Previous Work and Background
 3D object recognition
 3D object reconstruction

- Multiview refinement
- 3 Approach
- 4 Evaluation

3D object reconstruction: in-hand scanning

Huber (2003)

3D object reconstruction: tabletop scanning

Kehl (2014)

ТЛП

ICP: Iterative Closest Points

iterate:

- 1 compute correspondences $\{p_i \rightarrow q_i\}_1^N$
- 2 update current transformation $g = (R, t) \in SO(3)$

ICP: point to point

point to point distance

$$E = \sum_{i=1}^{N} ||Rp_i + t - q_i||^2$$
(2)
point to point

Besl and McKay (1992), Zhang (1994)

ICP: point to plane

point to plane distance

$$E = \sum_{i=1}^{N} ||(Rp_i + t - q_i) \cdot n_{q_i}||^2$$
(3)
point to plane

Chen and Medioni (1991)

ICP: Levenberg-Marquardt ICP

Solve

$$E(g) = \sum_{i=1}^N ||e_i||^2$$

iteratively

$$g_{k+1} = g_k + x$$

via nonlinear least-squares techniques

$$x = -(J^T J + \lambda I)^{-1} J^T e$$
Levenberg step

Fitzgibbon (2003)

1 Introduction

Previous Work and Background
 3D object recognition
 3D object reconstruction

Multiview refinement

3 Approach

4 Evaluation

5 Summary

Multiview refinement

Multiview Levenberg-Marquardt ICP (Fantoni et al. (2012))

- modeled as pose graph optimization (SLAM context)
- sparsity needs to be exploited for efficiency
- solved with the g2o framework (Kümmerle et al. (2011))

1 Introduction

2 Previous Work and Background

3 Approach

4 Evaluation

1 Introduction

2 Previous Work and Background

3 Approach

Preprocessing

- Pairwise coarse alignment
- Pairwise refinement
- Multiview refinement

4 Evaluation

5 Summary

1 Introduction

2 Previous Work and Background

3 Approach

Preprocessing

Pairwise coarse alignment

- Pairwise refinement
- Multiview refinement

4 Evaluation

5 Summary

Pairwise coarse alignment

Consists of three substeps

- Learning
- 2 Matching
- 3 Pose clustering and averaging

Learning: compute $O(N^2)$ PPF's

N imes (N-1) PPF's $F \in \mathbb{R}^4$

Approach

Pairwise coarse alignment

Learning: quantization and storage

$$quantizePPF(F, \delta, \theta) = \left(\lfloor \frac{||d||_2}{\delta} \rfloor, \lfloor \frac{\angle (n_1, d)}{\theta} \rfloor, \lfloor \frac{\angle (n_2, d)}{\theta} \rfloor, \lfloor \frac{\angle (n_1, n_2)}{\theta} \rfloor \right)$$

Matching: intersect 2 sorted lists

ТШ

Matching: Intermediate Coordinate System

$$T_{m \to s} = T_{s \to g}^{-1} R_x(\alpha) T_{m \to g}$$

Matching: Voting Scheme

• Accumulator space A: list of $|N^s|$ matrices $M^{|N^m| \times |\frac{360^\circ}{\theta}|}$

$$v \leftarrow max(\mathcal{A}(i^{s}))$$

$$i^{m}, i^{\alpha} \leftarrow argmax(\mathcal{A}(i^{s}))$$

$$\mathcal{P}_{i^{s}} = T_{i^{s} \rightarrow g}^{-1} R_{x}((i^{\alpha} + 0.5) * \theta) T_{i^{m} \rightarrow g}$$

Pose clustering and averaging

clustering:

- sort poses by their votes
- agglomerative clustering (bottom up)
- complete linkage criterium : $d(\mathcal{K}(i), \mathcal{K}(j)) = max\{d(\mathcal{P}_i, \mathcal{P}_j), \mathcal{P}_i \in \mathcal{K}(i), \mathcal{P}_j \in \mathcal{K}(j)\}$

averaging:

- sum up votes
- translation: Euclidean mean
- rotation: quaternion mean
- return cluster average with highest number of votes

Approach

Pairwise coarse alignment

1 Introduction

2 Previous Work and Background

3 Approach

- Preprocessing
- Pairwise coarse alignment
- Pairwise refinement
- Multiview refinement

4 Evaluation

5 Summary

Pairwise refinement

precomputed kd-tree

A k-d tree of (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)

point to plane ICP

Approach

Approach

Approach

Approach

Approach

Approach

Approach

Approach

Approach

Approach

Approach

Pairwise refinement: reconstruction 1

Approach

Pairwise refinement: reconstruction 2

Approach

Outline

1 Introduction

2 Previous Work and Background

3 Approach

- Preprocessing
- Pairwise coarse alignment
- Pairwise refinement
- Multiview refinement

4 Evaluation

5 Summary

ТШП

Multiview refinement

- \blacksquare relative \rightarrow absolute pose graph
- add knn nearest poses
- closes loops

Multiview refinement: reconstruction 2

Approach

Multiview refinement: reconstruction 3

Approach

Ш

Multiview refinement

$$E(g_1,...g_M) = \sum_{h=1}^{M} \sum_{k=1}^{M} A(h,k) \sum_{i=1}^{N_h} ||d(g_h(p_i^h),g_k(q_i^h))||^2$$
(5)

- A : graph adjacency matrix
- Multiview LM-ICP modeled as a graph in g2o
- error minimized using LM / Dogleg

Multiview refinement: reconstruction 3

Approach

Multiview refinement: reconstruction 4

Approach

Outline

1 Introduction

2 Previous Work and Background

3 Approach

4 Evaluation

Evaluation

Stages:

0 A B C preproc. pairwise align. pairwise refin. multiview refin.

Metrics:

The relative pose error at time step i with interval width Δ :

$$E_{i,\Delta} := (Q_i^{-1} Q_{i+\Delta})^{-1} (P_i^{-1} P_{i+\Delta})^{-1}$$
(**RPE**)

The absolute trajectory error at time step i:

$$F_{i} := Q_{i}^{-1}SP_{i}$$

$$\underbrace{\{P_{1}, \cdots, P_{n}\}}_{estimates}, \underbrace{\{Q_{1}, \cdots, Q_{n}\}}_{groundtruth} \in SE(3)$$

Evaluation

Outline

1 Introduction

2 Previous Work and Background

3 Approach

5 Summary

bunny2

Evaluation

real data

bench vise -step 15

Evaluation

real data

sequence	S	RPE [mm/%]			ATE [mm/%]			
params		rms	mean	std	rms	mean	std	
bunny2	Α	32.311	28.996	14.254	74.097	68.679	27.812	
	\downarrow	88	89	85	91	92	89	
	В	3.936	3.330	2.098	6.610	5.803	3.165	
	\downarrow	15	14	17	21	15	47	
	С	3.344	2.859	1.735	5.212	4.932	1.685	
	Α	72.998	67.519	27.747	215.475	184.514	111.283	
bench vise	\downarrow	83	85	74	76	75	78	
-step 15	В	12.287	9.979	7.168	52.579	46.602	24.346	
	\downarrow	26	23	34	59	58	62	
	С	9.031	7.676	4.758	21.737	19.662	9.270	

ТШ

Speed vs. accuracy on **bunny2** : The distance sampling rate τ_d is modified

Outline

1 Introduction

2 Previous Work and Background

3 Approach

Evaluation real data synthetic data

5 Summary

ТШП

bunny sphere -knn 5 -nFrames 5

Evaluation

synthetic data

juice box wavy -step 3

Evaluation

synthetic data

Kenny wavy -step 5 -diamM 0.4 -knn 4

Evaluation

synthetic data

sequence	s	R	PE [mm/º	%]	ATE [mm/%]						
params		rms	mean	std	rms	mean	std				
bunny sphere -knn 5 -nFrames 5	A	65.799	54.217	37.283	125.697	108.222	63.937				
	\downarrow	69	69	70	76	76	78				
	В	20.212	16.833	11.189	29.737	26.353	13.776				
	\downarrow	34	35	33	58	57	61				
	С	13.278	10.929	7.540	12.445	11.256	5.309				
juice box wavy -step 3	A	124.981	39.776	118.482	520.406	442.792	273.418				
	\downarrow	3	21	1	2	1	4				
	В	121.612	31.256	117.526	511.973	438.984	263.457				
	\downarrow	-1	-0	-1	0	1	-2				
	С	122.356	31.375	118.265	509.811	433.165	268.841				
Kenny wavy -step 5 -diamM 0.4	A	146.957	137.339	52.292	478.807	467.906	101.589				
	\downarrow	86	89	76	90	92	74				
	В	20.004	15.523	12.618	46.516	38.589	25.973				
-knn 4	\downarrow	12	15	7	26	25	28				
	С	17.619	13.126	11.753	34.490	29.064	18.571				

Speed vs. accuracy on **bunny sphere** -knn 06 : The number nFrames of frames to match to during the coarse pairwise alignment is modified

Speed vs. accuracy on **bunny sphere** -nFrames 06 : *The number of knn* nearest neighbors to add to the pose graph before multiview refinement is modified

Outline

1 Introduction

2 Previous Work and Background

3 Approach

4 Evaluation

Conclusion

- reconstruct small objects
- from a few range images
- in about 1 minute
- need variation in geometry
- need to find right set of parameters
- so that accuracy improves in each step
ТЛП

Future work

- reduce number of parameters
- use curvature to speedup PPF matching
- use color for robustness
- \blacksquare Ceres Solver for multiview refinement \rightarrow Master's thesis

Summary

Summary

ТШ

Point set PCA

$$Cov(P) = rac{1}{P} \sum_{i=1}^{P} (p_i - \bar{p})(p_i - \bar{p})^T = C, C \in \mathbb{R}^{3 \times 3}$$
 $e_1, e_2, e_3 \in \mathbb{R}^3$
eigenvectors(C)

(7) eigenvalues(C)

(9) curvature

 $\lambda_1 > \lambda_2 > \lambda_3 \in \mathbb{R}$

$$n(\{p_i\}) = -sign(e_{3,z}) \frac{e_3}{||e_3||}$$
 (8)
normal

$$\sigma(\{\boldsymbol{p}_i\}) = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3}$$

ЛШ

ICP: Generalized ICP

plane to plane distance

$$E = \sum_{i=1}^{N} f(p_i, q_i, n_{p_i}, n_{q_i})$$
(10)
plane to plane

Segal et al (2009)

Pumba -diamM 0.07 -step 15 -knn 4 -dmax 0.05

sequence	S	RPE [mm/%]			ATE [mm/%]		
params		rms	mean	std	rms	mean	std
Pumba	A	111.926	90.269	66.172	367.296	337.233	145.534
-diamM 0.07	\downarrow	83	84	81	74	72	82
-step 15	В	19.295	14.810	12.367	96.967	93.496	25.710
-knn 4	\downarrow	-12	-8	-17	-16	-17	-14
-dmax 0.05	С	21.519	15.982	14.411	112.917	109.038	29.342

cow wavy -step 5

leopard wavy -step 5 -diamM 0.3 -knn 4

ТUП

teddy abrupt -nFrames 5 -knn 4 -diamM 0.5

sequence	s	RPE [mm/%]			ATE [mm/%]		
params		rms	mean	std	rms	mean	std
	Α	38.893	32.589	21.228	78.353	71.332	32.418
cow wavy	\downarrow	87	88	86	86	86	87
-step 5	В	4.915	3.947	2.929	10.674	9.814	4.196
	\downarrow	18	29	2	50	51	46
	С	4.021	2.803	2.883	5.301	4.789	2.273
leopard wavy	Α	36.106	33.840	12.590	70.558	62.355	33.019
-step 5	\downarrow	82	83	74	87	87	88
-diamM 0.3	В	6.569	5.671	3.314	9.335	8.415	4.041
-knn 4	\downarrow	15	28	-15	43	43	43
	С	5.594	4.109	3.796	5.280	4.756	2.292
teddy abrupt	A	73.390	59.036	43.599	274.761	255.011	102.287
-nFrames 5	\downarrow	82	81	84	86	86	82
-knn 4	В	13.423	11.397	7.091	39.428	35.027	18.102
-diamM 0.5	\downarrow	33	30	40	50	48	56
	С	9.028	7.976	4.230	19.715	18.059	7.908