
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Continuous time trajectory estimation for 3D
SLAM from an actuated 2D laser scanner

Adrian Haarbach

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Continuous time trajectory estimation for 3D SLAM
from an actuated 2D laser scanner

Zeitkontinuierliche Trajektorienschätzung für 3D-SLAM
von einem sich bewegenden 2D-Laserscanner

Author: Adrian Haarbach
Supervisor: Prof. Dr. Rüdiger Westermann
Advisor: Dr. Stefan Romberg
Date: December 15, 2016

I assure the single handed composition of this master’s thesis only supported by declared
resources.

Ich versichere, dass ich diese Master’s Thesis selbständig verfasst und nur die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

Munich, December 15, 2016 Adrian Haarbach

Acknowledgments

First of all, I would like to thank Prof. Dr. Rüdiger Westermann for providing me with
the opportunity to pursue my master’s thesis at his computer graphics chair. I am also
very grateful for my advisor Dr. Stefan Romberg who offered me the chance to do an
exciting internship at NavVis. It was him who suggested the challenging and fascinating
topic pursued in this thesis.

The internship gave me the chance to meet many great people who helped me in the
struggle for thesis completion. A big thank you to my mentor Paul Zeller who gave me a
head start with his awesome simulator and who never got tired of all my questioning when
drafting the algorithm. I would also like to thank my colleagues Humberto Alvarez for his
calibration knowledge and chocolate supply, Tim Habigt for his insights in mathematical
optimization, Christian Werner for Americanizing my English and Octavio Cervantes for
his hardware knowledge and cooking skills.

I am standing on the shoulders of giants and would thus like to thank specific repre-
sentatives of the Open Source community as well as the academic world. The former
for providing great software such as Ceres and Eigen upon which I could build on, rep-
resented by their maintainers Sameer Agarwal and Gaël Guennebaud who immediately
answered all the questions I asked via mailing lists. The latter for being responsive to my
emails concerning publication details like Erik B. Dam and Per-Erik Forssén were.

Finally, I happily repeat acknowledgments I already made in my bachelor’s thesis, ad-
dressing the constants in my life: I would like to thank my family for the support during
my studies, my father for proof-reading this thesis, my friends for reminding me of the fun
part of life and my beloved Florian for his patience, care and support.

vii

Abstract

This thesis aims at estimating trajectories for 3D SLAM applications. A continuous time
formulation allows solving multiple problems inherent to the traditional discrete time ap-
proaches seamlessly, such as sensor fusion of actuated 2D laser scanner data with inertial
measurements. Special care is taken when choosing an appropriate trajectory representa-
tion. The well-known ICP algorithm used for rigid registration is extended significantly so
it can deal with continuous-time, multi-view registration of deformable scans. The result-
ing algorithm can be employed online in a time-windowed fashion to get an open-loop tra-
jectory estimate and offline for global optimization to further reduce the drift. In contrast
to previous work we are able to provide ground truth data for evaluation by extending
an existing simulator so that it can simulate actuated 2D laser scanner data with corre-
sponding inertial measurements. Experiments on synthetic data with different scenarios,
noise levels and parameter settings show the versatility, stability and adaptability of our
algorithm as well as its high overall accuracy.

ix

Abbreviations

ATE Absolute Trajectory Error
CICP Continuous ICP
CT-SLAM Continuous time SLAM
DoF Degree(s) of Freedom
GICP Generalized ICP
ICP Iterative Closest Point
IMU Inertial Measurement Unit
LERP Linear interpolation
LiDAR Light Detection And Ranging
LM Levenberg-Marquardt
LM-ICP Levenberg-Marquardt ICP
MV-LM-ICP Multiview Levenberg-Marquardt ICP
NICP Normal ICP
NLS Non-linear Least Squares
PCA Principal Component Analysis
RMS Root Mean Squared
RPE Relative Pose Error
SLAM Simultaneous Localization And Mapping
SLERP Spherical linear quaternion interpolation
SE(3) Special Euclidean group of rigid body motions
se(3) Lie algebra of twists
SO(3) Special orthogonal group of rotation matrices
so(3) Lie algebra of skew-symmetric 3x3 matrices
SQUAD Spherical cubic spline quadrangle quaternion interpolation
SU(2) Special unitary group isomorphic to unit quaternions
su(2) Lie algebra isomorphic to pure quaternions
surfel surface element
SVD Singular Value Decomposition
sweep data collected in one half-revolution
VO Visual Odometry

xi

Contents

Acknowledgments vii

Abstract ix

Abbreviations xi

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Outline . 2

2 Background 3
2.1 Rigid body motion . 3

2.1.1 Rotation matrices . 3
2.1.2 Quaternions . 5
2.1.3 Full rigid body motion parameterizations 7

2.2 Sensors . 9
2.2.1 Light Detection And Ranging (LiDAR) 9
2.2.2 Inertial Measurement Unit (IMU) . 10

2.3 Interpolating and approximating curves . 12
2.3.1 Linear interpolation (LERP) . 13
2.3.2 Bézier curve . 13
2.3.3 B-spline . 15

2.4 Principal Component Analysis (PCA) . 17
2.4.1 Curvature estimation . 18
2.4.2 Normal estimation . 18

2.5 Non-linear Least Squares (NLS) . 19

3 Related work 21
3.1 Iterative Closest Point (ICP) . 21

3.1.1 Taxonomy . 21
3.1.2 Variants . 22

3.2 Actuated 2D LiDAR based SLAM . 26
3.2.1 Spinning Laser 2009 . 26
3.2.2 Zebedee 2012 . 28
3.2.3 Bentwing 2016 . 30

3.3 Interpolating orientations . 30
3.4 Continuous time estimation . 33

xiii

Contents

4 Approach 37
4.1 Motivation . 37
4.2 Trajectory representation . 38

4.2.1 Choice between B-spline and composite Bézier curve 39
4.2.2 Cumulative B-spline quaternion curve 41
4.2.3 Orientation interpolation methods . 43
4.2.4 Rigid body motion interpolation methods 46
4.2.5 Summary . 48

4.3 Algorithm Overview . 49
4.4 Using IMU measurements . 50

4.4.1 Trajectory initialization via inertial navigation 50
4.4.2 Synthesized inertial measurements . 51
4.4.3 Trajectory regularization constraints 53

4.5 Using LiDAR measurements . 54
4.5.1 Accumulating 2D laser scans into a 3D sweep 54
4.5.2 Generating surfels . 55
4.5.3 Surfel match constraints . 55

4.6 Model optimization . 57
4.6.1 Time-windowed optimization . 58
4.6.2 Global optimization . 58

5 Evaluation 59
5.1 Evaluation metrics . 59
5.2 Scenarios . 60

5.2.1 Scenario box . 60
5.2.2 Scenario loop . 61
5.2.3 Scenario stairs . 63

5.3 Effect of noise . 64
5.4 Effect of different parameters . 65

5.4.1 Number of ICP iterations (iter) . 65
5.4.2 Knot spacing (taus) . 65
5.4.3 Space discretization (voxelSize) . 66

6 Summary 67
6.1 Conclusion . 67
6.2 Future work . 67

Bibliography 69

xiv

1 Introduction

(a) stationary 3D laser scanner Faro
Focus3d-X130.1

(b) actuated 2D laser scanner SICK LMS-291
mounted on a vehicle. [BZ09]

Figure 1.1: Choices when digitizing the environment.

Digitization of indoor space is currently a hot topic in areas such as construction plan-
ning or interactive retail. The most accurate digital models of scenes were historically
acquired with high accuracy 3D laser scanners (fig. 1.1a) from the surveying domain.
However these stationary solutions have several disadvantages when acquiring large-
scale models. The used sensor takes a lot of time to gather all the data of the surrounding
environment. During the acquisition of a scan it must furthermore stay fixed to avoid
deformations in the measured point clouds. However, to cover the whole environment,
multiple measurements have to be taken at various locations inside the scene and subse-
quently be aligned to get a complete model of the scene. This stop-and go approach is very
time-consuming and requires the final alignment of multiple point clouds by hand.

On the other hand, Simultaneous Localization And Mapping (SLAM) algorithms origi-
nating from the robotics domain allow to continuously estimate a trajectory from a moving
platform while building a map of the environment. These have originally been limited to
2D, but recent progress in sensor hardware and algorithms together with the increased
computational power available allow for full 3D SLAM achieving nearly the accuracy of
the stationary solutions, but in far less time.

While there are specifically developed 3D laser scanners for 3D SLAM applications, this
work aims at solving the even harder problem of estimating 3D trajectories using 2D laser
scanners. These are much cheaper than their 3D counterparts and their reduction in size
and weight in recent years allow for truly mobile applications. By actuating such a 2D
laser scanner appropriately (fig. 1.1b) it is possible to cover the whole environment visible
to the scanner. Reconstructing accurate models from actuated 2D laser scanners however
requires specialized algorithms for continuous time trajectory estimation, which are the
topic of this thesis.
1 Product image taken from the manufacturer’s website www.faro.com.

1

www.faro.com

1 Introduction

1.1 Motivation

Due to the fast sensor motion as a result of the actuation, it is in particular necessary to treat
the trajectory estimation problem in continuous time. Continuous time estimation theory
for application in SLAM has only been fully developed very recently. It allows to move
the laser scanner during acquisition by treating scans taken over a timespan as deformable.
Additionally, it eases the inclusion of high-rate sensor data such as inertial measurements.
Furthermore, it allows to keep the state size to estimate small by representing the trajec-
tory as a sum of few temporal basis functions. The specific choice of trajectory representa-
tion is by itself an important part of the estimation problem. It should have local control,
high continuity and no singularities when estimating orientations. The Iterative Closest
Point (ICP) algorithm was successfully used in 2D SLAM for scan matching to estimate
relative pose differences between two rigid 2D laser scans. It can be extended to obtain a
general Non-linear Least Squares (NLS) optimization problem for multi-view, continuous-
time estimation, which accurately registers scans of an actuated 2D laser scanner in 3D
space.

1.2 Contributions

The main contributions of this thesis are:

• An extensive evaluation of different trajectory representations.

• An accurate algorithm for continuous time trajectory estimation for 3D SLAM from
an actuated 2D laser scanner. All formulas needed for the algorithm are derived.

• An evaluation with ground truth data and different scenarios, noise levels, and pa-
rameters.

1.3 Outline

The remaining chapters of this thesis are organized as follows:

(chapter 2) A clear treatment of the theoretical background needed for our algorithm. This
comprises rigid body motion, sensor hardware, interpolation methods, principal
component analysis and non-linear least squares optimization.

(chapter 3) An extensive review of previous work regarding ICP, actuated LiDAR based
SLAM, orientation interpolation and continuous time estimation.

(chapter 4) Our main approach is motivated by proposing improvements over existing ap-
proaches. A large part is spent on finding a good trajectory representation. After
giving an overview over the algorithm, we show how sensor measurements are used
and how the employed model can be optimized.

(chapter 5) We evaluate our approach with different simulated scenarios, noise levels and
parameters and compare to the available ground truth.

(chapter 6) Summary of achievements and hints for future work.

2

2 Background

This chapter gives the theoretical preliminaries needed to follow the subsequent discus-
sion of previous work as well as the derivation of our approach. We start with the intro-
duction of rigid body motion (section 2.1), which is a crucial prerequisite for 3D motion
estimation. Then we describe the used sensor hardware (section 2.2). Continuous time
trajectories need to be represented by continuous curves, which is why we cover interpo-
lation techniques next (section 2.3). The basics of 3D shape analysis on point sets is also
covered (section 2.4). This chapter is concluded with a general optimization technique that
is utilized in our method (section 2.5).

2.1 Rigid body motion

A rigid body motion g is a family of transformations that describes how the coordinates of
an object or point p ∈ R3 in 3D Euclidean space change as a function of time τ . The shape
of the object should not change over time: it is solid and not deformable. Thus a rigid body
motion must preserve distance and orientation between any pair of points on the object.
Each rigid body motion g consists of a translational and a rotational part and has 6 De-
gree(s) of Freedom (DoF) in total. The translational part is easily minimally parametrized
by a displacement vector t ∈ R3, while there exist multiple possible parameterizations for
the rotational part.

In the following, we will first revisit different parameterizations of rotations, namely
rotation matrices (section 2.1.1) and unit quaternions (section 2.1.2). Then we will talk
about two possible parameterizations for the full rigid body motion (section 2.1.3). This
section closely follows [MSKS05, Ch. 2], which we refer to for further details.

2.1.1 Rotation matrices

Special orthogonal group of rotation matrices (SO(3))

A rotation can be represented by a matrix which fulfils special properties. When a vector
or point is rotated, it does not change its length. Thus the matrix R must be an orthonormal
matrix. The rotation of a point p ∈ R3 is then done by a simple matrix multiplication Rp.
Thus, the rotation matrices R form SO(3):

SO(3) = {R ∈ R3×3 | RTR = I, det(R) = +1}

From orthogonality, it easily follows that R−1 = RT . The rotation matrix R consists of 9
parameters, even though it only has 3 degrees of freedom (DoF). This means we can only
freely choose 3 entries that automatically determine the 6 remaining entries through the
conditions RRT = I and det(R) = 1. This is inconvenient for rotation interpolation and

3

2 Background

when estimating rotation parameters in an optimization problem, which is why we will
later introduce alternative parameterizations.

Lie algebra of skew-symmetric 3x3 matrices (so(3))

Given the time (τ) dependent orientation curve of an object R(τ) : R → SO(3), it must
satisfy R(τ)RT (τ) = I. Its time derivative must thus satisfy: Ṙ(τ)RT (τ) = −(Ṙ(τ)RT (τ))T ,
which means that Ṙ(τ)RT (τ) is a skew-symmetric matrix.

Each skew-symmetric matrix can be uniquely defined by an angular velocity vector ω ∈
R3. The cross product × : R3 → R3 has the important property ω×p = −p×ω. Since it is
a linear map, it can also be represented by a matrix product ω × p ≡ [ω]×p with the cross
product matrix operator [.]×:

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.1)
cross product matrix

A skew symmetric matrix has the important property [ω]× = −[ω]T×, in analogy to its
derivation via the cross product. [.]× : R3 → so(3) ⊂ R3×3 is an isomorphism between R3

and the space so(3) of all 3x3 skew symmetric matrices, which are the tangent space at the
identity of the matrix group SO(3):

so(3) = {[ω]× ∈ R3×3 | ω ∈ R3}

Matrix exponentiation and logarithm

Given an angular velocity vector ω = θω̂ ∈ R3, θ = |ω|, ω̂ ∈ S2, the instantaneous rotation
defined by it can be obtained by the following chain of operations and vice versa:

ω ∈ R3 [.]×−−−⇀↽−−−
[.]−1
×

[ω]× ∈ so(3)
exp−−⇀↽−−
log

R ∈ SO(3)

The matrix exponential exp has an exact and efficient closed form Taylor series expansion,
the Rodrigues’ rotation formula:

exp [ω]× = exp [θω̂]× = I + [ω̂]× sin θ + [ω̂]2×(1− cos θ)

The Rodrigues formula is also used to convert from the angle-axis representation of rota-
tions (θ, ω̂), yet another frequently used method to represent rotations, to a rotation ma-
trix. The above formula is only surjective, but there exists an efficient way to compute the
matrix logarithm log, the ’inverse’ of above formula [MSKS05, Theorem 2.1].

When using the small angle |θ| << 1 approximation, it holds that sin(θ) ≈ θ so by
approximating sin(θ) with θ and dropping the second and higher order terms from above
equation, we gain a first-order Taylor expansion of infinitesimal rotations:

R u I + [ω]× (2.2)
infinitesimal rotation

4

2.1 Rigid body motion

This approximation is linear in ω and is thus often used when estimating orientations via
linear algebra techniques or iteratively in optimization.

2.1.2 Quaternions

A quaternion q is basically the extension of a complex number c = a+ bi ∈ C:

C = R + Ri, i2 = −1

from 2 to 4 dimensions:
H = C + Cj, j2 = −1, ij = −ji

Formally, a quaternion q ∈ H may be represented by a vector q = [qw, qx, qy, qz]
T =

[qw,qx:z]
T together with the definitions:

adjoint/conjugate : q̄ = [qw,−qx:z]
T

norm : ‖q‖ =
√
q2
w + q2

x + q2
y + q2

z

inverse : q−1 =
q̄

‖q‖

Multiplication of two quaternions is associative and distributive, but anti-commutative
since qq′ 6= q′q, ij = −ji and defined as [DKL98, Jia08]:

qq′ = [qwq
′
w − qx:z · q′x:z,qx:z × q′x:z + qwq

′
x:z + qx:zq

′
w] (2.3)

quaternion multiplication

Where · is the dot product and × the cross product.

(a) Unit quaternions: Antipodal unit quater-
nions q and −q on the unit sphere S3 ⊂
R4 correspond to the same rotation matrix.
[MSKS05, Figure 2.1]

Pure Quaternions

Quaternions

R3

v= 0+v R4

v

(b) Pure quaternions: R3 viewed as the space of pure quaternions.
[Jia08, Figure 1]

Figure 2.1: The space of quaternions, its subspaces and their relation to other spaces.

5

2 Background

Special unitary group isomorphic to unit quaternions (SU(2))

Just as complex numbers can be used to represent rotations in R2 using Euler’s formula
eiϕ = cos (ϕ)+i sin (ϕ), certain quaternions can be used to represent rotations in R3. These
are exactly the quaternions with unit norm H1, a subspace of H. By identifying quaternion
coefficients with R4, unit quaternion coefficients form the 3-dimensional hypersphere S3.
The Special unitary group isomorphic to unit quaternions (SU(2)) is:

SU(2) ∼= S3 ∼= H1 = {q ∈ H | ‖q‖ = 1}

Note that topologically, the groups SU(2) ∼= S3 ∼= H1 are all isomorphic to each other.
This allows to transfer topological properties of one representative to the other ones. We
can make us of this isomorphism to draw the connection to rotation matrices, because
SU(2) is a universal cover of SO(3). Since the kernel of this cover has order 2, this is a
double covering of SO(3), meaning that the two antipodal unit quaternions q and−q both
represent the same orientation or rotation matrix (fig. 2.1a). Because of this, the distance
measure in S3 is also twice as long as that of SO(3).

To rotate a vector or point p ∈ R3 by the unit quaternion q ∈ H, one must apply:

qp := qpq̄ (2.4)
quaternion rotation

where the 3D vector p is interpreted as a pure quaternion [0,p]T with the scalar part set
to zero, and then the usual quaternion multiplication is applied. Note also that for unit
quaternions, it holds that q−1 = q̄. As a convention, we write qp to express quaternion ro-
tation, not to be confused with quaternion composition qq′, which is the direct application
of quaternion multiplication.

Lie algebra isomorphic to pure quaternions (su(2))

The group of unit quaternions H1 is isomorphic to the Lie group SU(2). Thus, its corre-
sponding Lie algebra su(2) should also have a representation via quaternions. These are
exactly the pure quaternions H0:

su(2) ∼= R3 ∼= H0 = {q ∈ H | qw = 0}

Since the scalar part of these quaternions is zero, we can identify their vector part with
a vector in R3 (fig. 2.1b), which can be interpreted as an angular velocity vector [Hol08].
Topologically, the algebras su(2) ∼= R3 ∼= H0 are all isomorphic to each other, so we can
choose whichever representative suits us best.

6

2.1 Rigid body motion

Quaternion exponentiation and logarithm

Similar to matrices, one can also define exponentiation and logarithm for quaternions.
These functions allow to convert between Lie group and algebra as follows:

ω ∈ R3 ∼= su(2)
exp−−⇀↽−−
log

q ∈ S3 ∼= SU(2)

Note that in contrast to the matrix representation, there is no intermediate representation
such as a skew-symmetric matrix needed in this case. However, one has to take care of the
double covering and the different distance measure when implementing above functions.

Given an angular velocity vector ω = θω̂ ∈ R3, θ = ‖ω‖ , ω̂ ∈ S2, the exponential

exp(ω) = [cos(0.5θ), ω̂ sin(0.5θ)]T = [qw,qx:z]
T = q ∈ S3 (2.5)

quaternion exp

becomes the unit quaternion which represents the rotation by angle θ about the axis ω̂
[KKS95]. The exponential map exp can 1) be interpreted as a mapping from the angular
velocity vector ω (measured in SO(3)) into the unit quaternion which represents the rota-
tion. 2) be used as a conversion from the angle-axis representation (θ, ω̂) of rotations to
unit quaternions. Omitting the scalar constant 0.5 in above equation yields a rotation by
angle 2θ instead of θ around ω̂, because ω is then measured in S3 instead of SO(3).

Since cos and sin are periodic functions, an inverse of exp, called log, only exists if we
limit the domain of θ < 2π:

log(q) = 2 arccos(qw)
qx:z

‖qx:z‖
T

= θω̂ = ω ∈ R3 (2.6)
quaternion log

Again, if we omit the scalar constant 2 in above equation, ω is measured in S3 instead of
SO(3).

2.1.3 Full rigid body motion parameterizations

Special Euclidean group of rigid body motions (SE(3))

One way to represent the full rigid body motion, consisting of translation and rotation, are
homogeneous coordinates and 4× 4 matrices, a representation for SE(3):

SE(3) =

{
T =

[
R t
0 1

]
∈ R4×4

∣∣ R ∈ SO(3), t ∈ R3

}
This representation comes in handy when points need to be transformed, since one has to
carry out a simple matrix vector multiplication. A point p ∈ R3, given as a column vector
p̃ = [p1, p2, p3, 1]T in homogeneous coordinates is transformed via Tp̃. Moreover, multiple
transformations can be composed by simple multiplication of their homogeneous 4 × 4
matrix representations.

7

2 Background

Tp = Tp̃ = Rp + t (2.7)
transformation

T−1 =

[
RT −RT t
0 1

]
(2.8)

inverse

T⊕ T′ = TT′ =

[
RR′ Rt′ + t

0 1

]
(2.9)

composition

Lie algebra of twists (se(3))

Being a Lie group, SE(3) also has its associated Lie algebra of twists ξ̂, which we will shortly
define here:

se(3) =

{
ξ̂ =

[
[ω]× v

0 0

]
∈ R4×4

∣∣ [ω]× ∈ so(3),v ∈ R3

}
⊂ R4×4

Its interesting property is that the vectors ω and v can be interpreted as angular and linear
velocity. There also exist versions of SE(3) exponentiation and SE(3) logarithm (4.5) to
convert between algebra and group, which will be analyzed later on (section 4.2.4).

Full rigid body motion with quaternions

Another way to parameterize SE(3) doesn’t use matrix-vector products to express rota-
tion by R and homogeneous coordinates to further express addition of t, but quaternion
multiplication and standard vector addition.

(q, t)p = qp + t (2.10)
transformation

(q, t)−1 = (q̄,−q̄t) (2.11)
inverse

(q, t)⊕ (q′, t′) = (qq′,qt′ + t) (2.12)
composition

We will mostly be using this representation, since it is singularity free and has at the same
time much fewer redundancy and constraints than the matrix representation, only the
unity norm constraint is left and one coefficient more than DoF. During optimization, we
will locally parameterize updates to a unit quaternion with a pure quaternion, and then
map back via quaternion exponentiation. This allows us to do unconstrained optimization
without having singularities.

8

2.2 Sensors

2.2 Sensors

2.2.1 Light Detection And Ranging (LiDAR)

(a) SICK LMS-291 (b) SICK LMS-100 (c) Hokuyo UTM-30LX

Figure 2.2: commercial 2D laser scanners.1

Light Detection And Ranging (LiDAR) was originally a field surveying or remote sens-
ing method that measures distance to a target by illuminating that target with a pulsed
laser beam. It is sometimes called laser scanning. In recent years 2D laser scanners have
successfully been adopted in robotics. The continuing reduction in weight, size and price
are appealing reasons to use these devices for trajectory estimation and reconstruction at
great precision. The most prominent devices used in the robotics domain are shown in
(fig. 2.2). The devices are ordered chronologically. When looking at their specifications,
note the drop in weight and size while at the same time the resolution and number of
measurements per second increases (table 2.1).

w
ei

gh
t

he
ig

ht

di
am

et
er

fr
eq

ue
nc

y

re
so

lu
tio

n
fie

ld
of

vi
ew

pt
s/

sc
an

pt
s/

s

SICK LMS-291 4,5kg 21cm 15cm 75Hz 1,00° 180° 180 13500
SICK LMS-100 1,1kg 15cm 10cm 50Hz 0,50° 270° 540 27000
Hokuyo UTM-30LX 0,3kg 9cm 6cm 40Hz 0,25° 270° 1080 43200

Table 2.1: 2D laser scanner specifications.2

Geometry and unprojection

2D laser scanners typically use a mirror rotating around the vertical axis to send the laser
beam out at a specific angle (fig. 2.3). The result is an array of range measurements in polar
coordinates, where each entry denotes the distance to the closest surface.

The process by which the real-world 2D points (xi, yi), measured in the horizontal scan
plane of the laser scanner, are mapped into the array or range measurements ri, 0 ≤ i ≤ n

1 Product images from the manufacturers websites www.sick.de and www.hokuyo-aut.jp.
2 Specifications according to the data sheets on the manufacturers websites.

9

www.sick.de
www.hokuyo-aut.jp

2 Background

(a) Laser beam directed by a rotating
mirror (b) top-down view of the environment

(c) the resulting laser scan measure-
ment

Figure 2.3: Laser scan technology.3

can easily be modeled by a transformation from the Cartesian coordinate system (x, y) into
the Polar coordinate system:(

φ
r

)
=

(
tan−1 y

x√
x2 + y2

)
, i = (φ− φ0)/∆φ

For 2D laser scanners which take measurements at equal angle increments ∆φ, the angle
φ is absorbed into the array index i, given as: i = (φ − φ0)/∆φ. The angle increment ∆φ
together with the starting angle φ0 is sometimes called the intrinsic parameters of the laser
scanner, which also define its field of view.

If we know the intrinsic parameters of the laser scanner, the above process can easily
be reversed. This is a necessary conversion, since we will later be dealing with points in
Cartesian coordinates only. So to convert a raw measurement r at array index i into a 2D
Cartesian coordinate, with the laser scanner at the origin (0, 0), we apply:(

x
y

)
=

(
r cos(φ)
r sin(φ)

)
, φ = φ0 + i∆φ (2.13)

lidar backprojection

2.2.2 Inertial Measurement Unit (IMU)

(a) Vectornav VN-100 (b) SBG Ellipse-N

Figure 2.4: Commercial strapdown IMU’s.4

3 Drawings from https://en.wikipedia.org/wiki/Lidar.
4 Product images from the manufacturers websites www.vectornav.com and www.sbg-systems.com.

10

https://en.wikipedia.org/wiki/Lidar
www.vectornav.com
www.sbg-systems.com

2.2 Sensors

An Inertial Measurement Unit (IMU) is a device that measures the angular rate and lin-
ear acceleration of a body. It was originally developed for navigation of ships, airplanes,
satellites and missiles. It usually contains 3 accelerometers and 3 gyroscopes for each di-
rection, mounted to a common base and can be implemented (fig. 2.5) in two ways [TW04]:

Figure 2.5: Types of IMU’s [GWA07, Fig 2.1]

• Strapdown systems: The inertial sensors are directly connected to the case. Requires
large computational power for correct integration.

• Gimbaled or stable platform systems: The inertial sensors are isolated from external
rotational motion. Requires heavy mechanic.

Nowadays, strap-down IMUs are the prevalent type for most applications due to their
low cost, light weight, and today’s processing power (fig. 2.4).

Sensor frame and noise model

As said before an IMU measures two quantities, the rotation rate or angular velocity ω̃ ∈
R3, measured in SO(3) and the linear acceleration ã ∈ R3. Let us introduce 2 frames, the
world frame w and the sensor frame s. In strap-down IMU’s, these vector-valued quantities
are measured in s. Both measurements are affected by zero-mean additive white noise as
well as subject to slowly varying biases sbω and sba. Additionally, the world’s gravity wg,
rotated into the sensor frame, is contained in the measured acceleration vector:

sω̃(τ) = sω(τ) + sbω(τ) +N (0, σω) (2.14)
angular velocity

sã(τ) = sa(τ) + q̄(τ)wg + sba(τ) +N (0, σa) (2.15)
linear acceleration

11

2 Background

2.3 Interpolating and approximating curves

Given a sequence of n + 1 control points p0, ...,pn ∈ Rx at discrete times, the question is
how to fill in the intermediate values to get a continuous spatial curve. Before choosing an
appropriate technique, we must consider multiple issues[Par12, Ch. 3]:

1. Interpolation vs. approximation: An interpolating curve passes through the control
points, whereas in approximation, the points merely control the shape of the curve,
which doesn’t have to pass through them.

An interpolating spline in which the spline
passes through the interior control points

An approximating spline in which only the
endpoints are interpolated; the interior control
points are used only to design the curve

Figure 2.6: Interpolation vs. approximation [Par12, Fig 3.1]

2. Continuity: The smoothness of a curve is determined by how often one can derive it
without loosing continuity.

C0 or positional continuity means the curve itself has no jumps

C1 or tangential continuity is usually sufficient in animation applications, requiring
a smooth velocity curve

C2 or curvature continuity becomes important when dealing with time-dependent
curves, requiring a smooth acceleration curve

Figure 2.7: Continuity [DKL98, Fig 6.12]

3. Global vs. local control: If a change in a single control point only affects the shape of
the curve in a limited region, the curve is said to have local control. If it affects the
entire curve, even slightly, it is said to have global control.

Global control: moving one control point changes the entire curve; distant sections may change
only slightly

Local control: moving one control point only changes the curve over a finite bounded region

Figure 2.8: Global vs. local control [Par12, Fig 3.3]

4. Complexity: computational effort needed to construct and evaluate the curve.

12

2.3 Interpolating and approximating curves

2.3.1 Linear interpolation (LERP)

The line connecting p0,p1 ∈ Rx is given in u ∈ [0, 1] by linear interpolation [Han06, 25.1]:

lerp(p0,p1, u) = (1− u)p0 + up1 = p0 + u(p1 − p0) (2.16)
LERP

If more than 2 points need to be interpolated, the easiest way is to use piecewise linear
interpolation, generating a line segment for each consecutive pair of points. Piecewise lin-
ear interpolation curves interpolate all points, have local control and low complexity, but
are only C0 continuous, meaning that the velocity is piecewise continuous and accelera-
tion is infinite at the control points and 0 elsewhere. Thus, they cannot represent smooth
motions, which is why higher order interpolation methods have been developed.

2.3.2 Bézier curve

To gain higher order continuity, one can apply LERP (2.16) to pairs of n + 1 consecutive
control points in an iterative manner. This geometric construction scheme by repeated lin-
ear interpolation is known as the de Casteljau algorithm [Far02, Ch. 4], defined by the
following recurrence relation:

p
(0)
i = pi i = 0, ..., n− k, k = 1, ..., n

p
(k)
i = (1− u)p

(k−1)
i + up

(k−1)
i+1

It allows recursively computing a Bézier curve [Far02, Ch.5] [Mor97, Ch. 4] [Par12,
Appendix B.5.9] of degree n, for example (fig. 2.9) :

n = 1 : p(u) = (1− u)p0 + up1

n = 2 : p(u) = (1− u)p
(1)
0 + up

(1)
1 = (1− u)

(
(1− u)p0 + up1

)
+ u
(
(1− u)p1 + up2

)
= (1− u)2p0 + 2u(1− u)p1 + u2p2

n = 3 : p(u) = (1− u)p
(2)
0 + up

(2)
1 = . . .

= (1− u)3p0 + 3u(1− u)2p1 + 3u2(1− u)p2 + u3p3

The weights of the control points pi are exactly the Bernstein polynomials Bn
i (u), which

allow for an explicit representation of a Bézier curve of a certain degree n [Far02, Ch. 5]:

p(u) =
n∑
i=0

Bn
i (u)pi , Bn

i (u) =

(
n

i

)
ui(1− u)n−i (2.17)

Bézier curve

The above curve can also be written in matrix form. For the cubic Bézier curve (n = 3),

13

2 Background

(a) linear (b) quadratic (c) cubic

Figure 2.9: Bézier curves of degree 1,2 and 3 evaluated at different times using the de Casteljau
algorithm. The control points are associated by colour with their respective weights in
the interval u ∈ [0, 1], given by the Bernstein polynomials of the corresponding degree.

defined by 4 control points, we get [Mor97, 84][Par12, 460]:

p(u) = [u3, u2, u, 1]


−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0



p0

p1

p2

p3

 (2.18)
Bézier matrix

A Bézier curve interpolates the first and last control point, while the inner ones are ap-
proximated. Being a polynomial, a Bézier curve is infinitely many times differentiable.
However, the degree n of the curve grows linearly with the number of control points n+1.
High degree curves suffer from the oscillation problems inherent to high-order polynomi-
als and also have a high complexity. Additionally, they have global control.

14

2.3 Interpolating and approximating curves

2.3.3 B-spline

A B-spline [Far02, Ch. 8] [Mor97, Ch. 5] [Par12, Appendix B.5.12] is a piecewise polyno-
mial function and a generalization of a Bézier curve. It is defined over a knot sequence
{τi}, τi ≤ τi+1, which allows to decouple the degree k − 1 or order k of the curve from the
number n+ 1 of control points, in contrast to the Bézier curve. Each control point pi is as-
sociated with its knot τi. The B-spline curve p(τ) is defined as a weighted sum of B-spline
basis functions Nk

i :

p(τ) =
n∑
i=0

Nk
i (τ)pi (2.19)

B-spline

Where the basis functions themselves adhere to the following recurrence, which can be
computed using the de Boor algorithm:

N0
i (τ) =

{
1 if τ ∈ [τi, τi+1)
0 otherwise

Nk
i (τ) = (1− αi,k)Nk−1

i−1 (τ) + αi,kN
k−1
i (τ)

αi,k =
τ − τi

τi+n+1−k − τi

The above formula looks similar to the Bézier curve, but instead of blending basis func-
tions iteratively with weights (1 − u) and u, these are now replaced by 1 − αi,k and αi,k,
which change at each iteration. A new global time variable τ ∈ [τ0, ..., τn+1] is introduced
while the parametric variable u ∈ [0, 1] is not necessary anymore, but can be used as a local
variable for a B-spline segment between two knots (fig. 2.10).

In practice, we are mostly interested in C2 continuous curves, and thus need to use at
least cubic (degree=3, order=4) B-splines. A uniform knot spacing furthermore simplifies
computation and notation while still being able to represent most curves. For a uniform
cubic B-spline, we can give a matrix form as follows [Mor97, 125][Par12, 464]:

p(τ) = [u3, u2, u, 1]
1

6


−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0



pi−1

pi
pi+1

pi+2

 , u =
τ − τi
τi+1 − τi

, τ ∈ [τi, τi+1)

(2.20)
B-spline matrix

A B-spline has local support. The complexity is thus bounded by the continuity require-
ment, and not by the number of control points. It does not interpolate, but only approxi-
mates the control points. In a cubic B-spline, four consecutive control points influence the
curve at time τ , where τ ∈ [τi, τi+1). In contrast to a Bézier curve, this means that the curve
is only defined in [τ1, τn] instead of [τ0, τn+1]. To cope with this issue in the uniform knot
spacing case, phantom points have to be added at the beginning and end of the spline so
that the curve is defined over the timespan of all control points. These can be placed so
that the B-spline actually interpolates the first and last control point.

15

2 Background

(a) linear (b) quadratic (c) cubic

Figure 2.10: B-spline segment of degree 1,2 and 3 evaluated with the de Boor algorithm. The gray
area indicates the current segment u ∈ [0, 1] between the two knots τi, τi+1. Only the
basis functions which influence the current segment are plotted, notice how they ex-
tend to neighbouring segments to ensure continuity across segment boundaries. The
width or support of a basis function is exactly degree+1 segments.

16

2.4 Principal Component Analysis (PCA)

2.4 Principal Component Analysis (PCA)

In the following we describe the Principal Component Analysis (PCA), a mathematical
tool that allows to compute surface statistics such as curvature (2.24) and normal (2.25) of a
point set. Later in our method we will make use of this tool to process point measurements
acquired by laser scanners (section 4.5.2).

Figure 2.11: PCA of a multivariate Gaussian (2D) distribution. The mean is at (1,3). The two eigen-
vectors of the covariance matrix are scaled by their corresponding eigenvalues with a
standard deviation of 3 in the (0.866, 0.5) direction and of 1 in the orthogonal direction.5

To supply a point p ∈ R3 with a surface normal ~n, we first try to fit a multivariate
Gaussian distribution N (µ,Σ) to all the n points {pi} in the vicinity of the measurement
point. The mean or centroid µ and the covariance matrix Σ are computed as follows:

µ =
1

n

n∑
i=1

pi ∈ R3 (2.21)
centroid

Σ =
1

n

n∑
i=1

(pi − µ)(pi − µ)T ∈ R3×3 (2.22)
covariance matrix

The 9 entries of the covariance matrix not only describe how much the points deviate from
their centroid, but also the amount of correlation between the different dimensions.

Principal Component Analysis (PCA) is a statistical method which converts a set of cor-
related variables into a set of linearly uncorrelated ones, using an orthogonal basis trans-
formation. This is done by eigen decomposition of the covariance matrix Σ:

Σ = UDUT ,U =

 | | |
e0 e1 e2

| | |

 ,D =

λ0

λ1

λ2

 (2.23)
eigen decomposition

5 Plot from https://en.wikipedia.org/wiki/Principal_component_analysis.

17

https://en.wikipedia.org/wiki/Principal_component_analysis

2 Background

The eigenvectors e0, e1, e2 ∈ R3 of the covariance matrix are called principal compo-
nents and point in the direction of largest variance, measured by their associated eigenval-
ues. Being the eigenvectors of the symmetric covariance matrix, the principal components
are orthogonal and thus uncorrelated to each other. The transformation is defined in such
a way that the principal components are ordered by the amount of variance in their direc-
tion, i.e. the magnitude of their corresponding eigenvalues λ0 ≤ λ1 ≤ λ2 ∈ R.

2.4.1 Curvature estimation

PCA can be used to get an estimate of the mean curvature of the underlying surface. In
[PGK02, 2.1: Covariance Analysis], the authors approximate the mean curvature at a point
p with what they call the surface variation σ ∈ [0, 1

3] based on n neighbours. It is defined
as the ratio of λ0 which quantitatively describes the variation along the surface normal to
the sum of all eigenvalues. A value of σ = 0 indicates a flat region, while the maximum
value σ = 1/3 is attained for totally isotropically distributed points:

σ =
λ0

λ0 + λ1 + λ2
(2.24)

curvature

2.4.2 Normal estimation

If the curvature indicates a flat region, it makes sense to compute the normal of that local
plane. The two principal components e1, e2 associated with the larger two eigenvalues
e1, e2 span the plane tangent to the point, while the other principal component, e0 is the
normal of that plane. This is due to the fact that its corresponding eigenvalue λ0 is the
smallest of all three, since the variation of points approximately lying in a plane is small-
est in the direction of the plane normal. For every tangent plane, there are two possible
normals which point in opposite directions. If the points were acquired by a LiDAR scan-
ner and given in its sensor frame with the scanner at the origin, we can align the normals
by checking the angle between the normal and the vector from the scanner origin to the
centroid µ. One needs to flip all normals whose dot product with the centroid is smaller
than zero, meaning that they were pointing more than 90 degrees away from each other.
Furthermore, since normals only specify a direction, their magnitude is irrelevant. Thus,
they must be normalized to be unique:

~n =
e0

‖e0‖
sign(µTe0) (2.25)

normal

Having unique normals all of unit length allows to compare two of them approximately in
Euclidean space by looking at their coefficient differences. This has the advantage that we
can treat them like usual vectors in R3 and apply similar techniques for nearest neighbor
queries, e.g. storing them in a kd-tree for fast lookups, which will be used later on in our
method.

18

2.5 Non-linear Least Squares (NLS)

2.5 Non-linear Least Squares (NLS)

We now turn to the Non-linear Least Squares (NLS) problem and optimization algorithms
for its solution. These kind of problems come up in many areas, e.g curve fitting in statistics
or minimizing re-projection errors in computer vision. It is very relevant for this thesis
because the solution of such a problem is at the core of our approach (section 4.6).

The goal for the problem’s solution is to find a model function that minimizes a sum of
squared residuals, that is the sum of squared differences between observed and modeled
values. While the model function to optimize in linear least squares problems is a linear
combination of the parameters to estimate that can always be written in matrix form Ax =
b and solved efficiently via various linear algebra techniques, this is not possible for non-
linear least squares problems where the parameters appear as functions fi. The general
form of a NLS problem is:

E(x) =

N∑
i

∥∥fi (xi1 , ..., xij)∥∥2
=

N∑
i=1

rTi ri = rT r (2.26)
NLS

The
[
xi1 , ..., xij

]
are the j parameter blocks of the i’th cost function, whose current values

define the i’th residuum ri = fi
(
xi1 , ..., xij

)
. By stacking all of the N ri’s into r, the vector

of concatenated residuals, the summation of squared L2 vector norms ||.||2 can be rewritten
compactly using the dot product.

The Levenberg-Marquardt (LM) algorithm is an optimization procedure which solves
NLS (2.26) iteratively. It combines gradient descent and Gauss-Newton approaches to
function minimization. The goal at each iteration k is to choose an update ∆x to the current
estimate xk, so that the new estimate xk+1 = xk + ∆x reduces the error E(x). The idea is
to approximate the residuals ri by their first order Taylor series expansion:

ri(x+ ∆x) ≈ ri(x) +∇ri(x)∆x = ri + Ji∆x (2.27)

Here, Ji = ∂ri
∂x = ∇ri(x) is the Jacobian of ri, computed in x. Similarly to stacking the resid-

uals ri into r, we can stack the Jacobians Ji into J = ∂r
∂x = ∇r(x). With the approximation

(2.27), the sum of squared residuals in NLS (2.26) becomes:

E(x+ ∆x) = r(x+ ∆x)T r(x+ ∆x)

≈ (r + J∆x)T (r + J∆x)

= rT r + rTJ∆x+ (J∆x)T r + (J∆x)T (J∆x)

= rT + 2∆xTJT r + ∆xTJTJ∆x

At each iteration, the task is to find an update step ∆x which will minimize E(x + ∆x).
Differentiating the above expression with respect to x and equate with zero gives:

∇xE(x+ ∆x) = 2JT r︸ ︷︷ ︸
b

+ 2JTJ︸ ︷︷ ︸
H

∆x = 0

This is an expression involving b, the gradient, and H , the Gauss-Newton approxima-

19

2 Background

tion to the Hessian. The useful property of this approximation of the Hessian is that it only
requires first order derivatives, not second order ones like the true Hessian. It is thus much
easier to derive analytically or compute numerically. Solving the linear system Hx = −b
for x yields the Gauss-Newton update ∆x = −(JTJ)−1JT r. Whether this step actually
reduces the error E depends on the accuracy of the Taylor series expansion at x and the
validity of the Gauss-Newton approximation. This is usually the case when near the min-
imum. On the other hand, a simple gradient descent step ∆x = −λ−1JT r guarantees to
reduceE, provided that λ is sufficiently large (and thus the step size λ−1 small), but its con-
vergence near the minimum is very slow. The LM algorithm combines both approaches in
quite a simple way:

∆x = −(JTJ + λI)−1JT r (2.28)
Levenberg step

Large λ correspond to small, safe gradient descent steps, which are sure to decrease the er-
ror, while small λ allow fast convergence near the minimum, but might otherwise increase
the error. The Levenberg step (2.28) can also be obtained by minimizing the damped ver-
sion, called the augmented normal equations (H+λI)∆x = −b instead ofH∆x = −b. The
scaled identity matrix summand λI acts like a regularizer, meaning that, even if H is close
to singular, Cholesky decomposition of H + λI to solve the above would still work. The
art of a good LM implementation is to tune λ after each iteration to allow for fast conver-
gence: If the new error is lower than the previous one, the update ∆x is accepted and λ is
decreased. If the new error is larger than the previous one, the update ∆x is discarded and
λ is increased.

The LM algorithm is a Trust Region method, because it locally approximates the objective
function with a quadratic model function that can be solved linearly for the update step.
It is a restricted update step because the Trust Region is either expanded or contracted,
depending how good the model fits the objective function, by tuning ∆x. Google’s Ceres
Solver [AM] implements Line Search as well as Trust Region algorithms to solve NLS (2.26)
iteratively. It allows to model a NLS (2.26) problem independent of the algorithm used
to solve it. The implemented Line Search algorithms, such as steepest descent, and Trust
Region algorithms, such as LM or Powell’s Dogleg, can be switched out seamlessly.

20

3 Related work

With the background acquired in the last chapter, we are now ready to discuss the previ-
ous work related to our approach. In general, one can subdivide the contributions to our
method into 4 categories. The first discusses the classical algorithm for point cloud regis-
tration (section 3.1) and important variants of it. The next served as main inspiration for
this work and considers the hardware and algorithm design to make full 3D SLAM from
actuated 2D LiDAR scanners possible (section 3.2). We then go back 20 years into the past
by looking at classical methods to interpolate in the space of orientations (section 3.3) from
a computer graphics perspective. Finally we return to the present by revisiting the recent
progress made in continuous time estimation (section 3.4) in the fields of computer vision
and robotics.

3.1 Iterative Closest Point (ICP)

The optimal registration of point clouds acquired e.g. by LiDAR is an important sub-
problem in SLAM. It allows building coherent maps from multiple measurements and
localize within them. Given the points from two scans taken at different locations and
named data and model point cloud, we wish to estimate the relative rigid body transfor-
mation g = (R, t) that aligns them. However, the problem is that the true correspondences
between the individual points needed to align them are not known beforehand.

The key idea of the ICP algorithm, introduced by [BM92, CM91], is to use closest point
correspondences between data and model point clouds to approximate the true correspon-
dences. It can be summarized in two steps, which are iteratively repeated until conver-
gence to the desired solution is achieved:

I Compute correspondences {pi → p′i}N1 between two scans: for each data point g(pi)
transformed by the current estimate g, find its closest model point p′i.

II Update the current transformation estimate g so that it minimizes an error metric
defined on these correspondences, i.e. the distance between corresponding points.

Since both steps must reduce the error, convergence to a local minimum is guaranteed
[Fit03]. Furthermore, an easy termination criterion is met if the set of correspondences
from step I does not change compared to the previous iteration. This means the previ-
ous transformation in II already brought the energy to a local minimum, so the current
transformation would be the identity.

3.1.1 Taxonomy

ICP is a popular and well-studied algorithm for 3D shape alignment. Over the years,
there have been various modifications to the original algorithm, resulting in a plethora of

21

3 Related work

different, problem-specific variants. The detailed study [RL01] establishes a taxonomy that
allows to categorize and compare these different variants in a unified manner:

1. Selection of some set of points in one or both input point sets.

2. Matching these points to compatible points in the other set.

3. Weighting the corresponding pairs appropriately.

4. Rejecting certain pairs as outliers.

5. Error metric definition on the set of inliers.

6. Minimization of the error metric.

3.1.2 Variants

In the following we will first present the two classical and most well-known ICP variants.
In recent years, ICP has seen numerous extensions. We especially focus on those variants
relevant in the context of our proposed approach (section 4.5.3). Of particular interest is
the choice of error metric (5.), which furthermore limits the way minimization (6.) can be
carried out.

(a) point to point: Each point in the source surface is
registered to the closest point in the destination sur-
face. The error metric is the Euclidean distance be-
tween these point correspondences.

tangent
plane

s1

source
point

destination
point

d1

n1

unit
normal

s2

d2

n2

s3

d3

n3

destination
surface

source
surface

l1

l2

l3

(b) point to plane: The error metric is the projection of
the distance vector between corresponding points
si − di onto the surface normal of the destination
surface ni, giving the projected vector li. [Low04]

Figure 3.1: Error metrics of classical ICP variants. The goal of both is to register each point of the
source surface (lower curve) with the destination surface (upper curve). Correspon-
dences are shown as straight lines between the two curves.

Point to point

The original and simplest error metric (5.) introduced by [BM92] penalizes the Euclidean
distance (fig. 3.1a) between a data point pi, transformed by the current estimate, and its
model point p′i:

E =

N∑
i=1

∥∥Rpi + t− p′i
∥∥2 (3.1)

point to point

Minimization (6.) is usually done via a closed form solution e.g. using the Singular Value
Decomposition (SVD) approach [AHB87]. For more details see [Haa15, 3.6.2, A.2].

22

3.1 Iterative Closest Point (ICP)

Point to plane

Introduced by [CM91], who considered the more specific problem of aligning range data
for object modeling. They take advantage of the fact that most range data is locally planar
and can thus be supplied with surface normals ~n′i, describing the tangent plane for each
model point p′i (fig. 3.1b). The error metric (5.) is the distance between a data point to the
tangent plane of its model point, implemented as the projection of the Euclidean distance
between the points, as in the point to point error, onto the normal of the model point. This
lets flat regions slide along each other, which turns out to be very advantageous for the
alignment of point sampled surfaces from range scans: The location of points in two scans
belonging to the same surface may be different due to sampling, but their tangent planes
and thus normals are still the same:

E =

N∑
i=1

(Rpi + t− p′i) · ~n′i (3.2)
point to plane

Minimization (6.) is usually done via an approximation by locally linearizing the rotation
matrix (2.2). Then, a closed form solution can be obtained from the overdetermined set of
equations of the approximation, a standard linear least-squares problem of the form Ax =
b. This can be solved e.g. using the pseudo-inverse [Low04], or by Cholesky decompo-
sition of the positive semidefinite matrix obtained from the normal equations. For more
details see [Haa15, 3.6.3, A.3].

Levenberg-Marquardt ICP (LM-ICP)

Instead of closed form solutions, one can also perform minimization using general NLS
algorithms, as was done first in [Fit03], where the LM algorithm was used to minimize
point to point (3.1) errors, termed LM-ICP. This iterative approach is slower than the closed
form solution, but allows to incorporate robust cost functions and has a wider basin of
convergence, due to the multiple evaluations of the cost in the inner iterations after each
Levenberg step (2.28).

Multiview Levenberg-Marquardt ICP (MV-LM-ICP)

So far, we were always doing pairwise ICP, resulting in a relative transformation that aligns
one cloud with the other. But why not align multiple clouds with each other at the same
time? This is the idea of MV-LM-ICP [FCF12], the straightforward extension of LM-ICP
[Fit03] from the pairwise to the multiview setting.

In the multiview setting, the roles of model and data cloud are no longer fixed, since
one cloud can take on the roles of both of them. Instead of computing the relative transfor-
mation g = (R, t) that aligns the data with the model cloud, we need to estimate absolute
transformations for both clouds that bring them into alignment. For example, the point to
point (3.1) error between cloud Ch and cloud Ck with absolute poses gh and gk reads as

23

3 Related work

follows:

E(gh, gk) =

Nh∑
i=1

∥∥Rhpi + th − (Rkp
′
i + tk)

∥∥2 (3.3)
absolute pose error

where {pi → p′i} are the Nh closest point correspondences obtained from the clouds. Let
C1, . . . CM be the set of point clouds that are brought to be in alignment. To generalize and
formalize the notation of which cloud gets registered to which other cloud, we can encode
these relations as a directed graph, with the adjacency matrix A ∈ {0, 1}M×M , such that
A(h, k) = 1 if cloud Ch can be registered to cloud Ck. Let g1, . . . gM be the absolute camera
poses of each view in the global reference frame. The overall alignment error, which we
want to minimize at this stage, is obtained by summing up the contribution of every pair
of overlapping views:

E(g1, ..., gM) =

M∑
h=1

M∑
k=1

A(h, k)

Nh∑
i=1

∥∥Rhpi + th − (Rkp
′
i + tk)

∥∥2 (3.4)
multiview error

The solutions g1, ..., gM = argmin(E) are the absolute camera poses that align the M
clouds in a least squares sense. In contrast to the pairwise case, there are no closed form so-
lutions in the multiview setting. However, rigid point cloud registration is just an instance
of NLS and can thus be solved iteratively, e.g. using Ceres Solver [AM].

Generalized ICP (GICP)

New methods to minimize correspondence errors also accelerated the development of a
new error metric that doesn’t have a closed form solution. The most prominent of these
is GICP [SHT09], where the authors extend the point to plane (3.2) error to the symmetric
plane to plane (3.6) error.

The idea is that we know the position of a point along its normal with high confidence,
while we are unsure about its location in the plane. But since two non-parallel planes in
R3 always intersect, the derivation involves the covariances Σ of the local plane approxi-
mations to match, not just their normals. To compute surface normals and covariances, the
authors used PCA. However, they did not use the covariance matrix (2.22) Σ directly, but
computed its eigen decomposition (2.23) Σ = UDUT and replaced its eigenvalues in the
diagonal matrix D to get the modified covariance matrix Σ̂, imposing a disc shape prior:

Σ̂ = U

ε 1
1

UT (3.5)
disc shape prior

The matrix U, consisting of the orthogonal eigenvectors as columns, is left untouched,
since it forms a rotation matrix which maps from the identity frame to the frame aligned
with the surface normal e0. The smallest eigenvalue λ0 is replaced with an even smaller
constant ε = 0.001 describing the thickness of a noise-free planar surface, while the other
two larger eigenvalues are replaced with 1. This allows corresponding points to deviate
further from each other in their common tangent plane than their original noisy covariance

24

3.1 Iterative Closest Point (ICP)

matrices would have allowed for.
The covariance matrices of both data p and model point p′ are modified in this way

which finally allows to define the plane to plane error:

E =
N∑
i=1

d(pi,p
′
i)
T (RΣ̂piR

T + Σ̂p′i
)−1d(pi,p

′
i) (3.6)

plane to plane

where d(pi,p
′
i) = Rpi + t − p′i is the usual point to point (3.1) error vector between the

points. The gist of the plane to plane (3.6) error metric is the scaling of this error vector
by the information matrix Σ̂−1

pi∪p′i
= (RΣ̂piR

T + Σ̂p′i
)−1, which is the inverse of the sum of

two covariance matrices. This matrix sum tries to describe the joint distribution of the two
local plane approximations. Note that the data covariance Σ̂pi needs to be rotated into the
frame of the model covariance Σ̂p′i

, in which the error vector d(pi,p
′
i) is also given.

The symmetric nature of the plane to plane (3.6) error allows the algorithm to converge
even in an extreme case (fig. 3.2) in which point to plane (3.2) would get stuck in a local
minima.

Figure 3.2: Illustration of plane to plane. Points are denoted as black dots with their covariance
ellipses. Correspondences are shown as blue dashed lines. In this case all of the points
along the vertical section of the green scan are incorrectly associated with a single point in the
red scan. Because the surface orientations are inconsistent, plane-to-plane will automatically dis-
count these matches: the final summed covariance matrix of each correspondence will be isotropic
and will form a very small contribution to the objective function relative to the thin and sharply
defined correspondence covariance matrices. An alternative view of this behavior is as a soft
constraint for each correspondence. The inconsistent matches allow the red scan- point to move
along the x-axis while the green scan-points are free to move along the y-axis. The incorrect
correspondences thus form very weak and uninformative constraints for the overall alignment.
[SHT09]

Normal ICP (NICP)

In [SG15], the authors extend the point to plane (3.2) error in a different way. The coordi-
nates of points are augmented with surface normals for both data and model cloud. These
are not only used when searching for correspondences, but also in the error metric. Thus,
they minimize a distance between 6D vectors instead of 3D points. This allows to solve an
additional DoF in the surface orientations and has a larger basin of convergence than the
original point to plane (3.2) variant.

25

3 Related work

In GICP, a 3 × 3 covariance matrix was obtained as the sum of the covariance matrices
of both points resulting in the symmetric plane to plane (3.6) error. The inverse of the mea-
surement covariance, the information matrix, is used to scale the error appropriately by its
uncertainty. In NICP, the covariance matrix is a 6× 6 matrix because of the augmented er-
ror vector. It is obtained using just the information from one of the points which makes the
error unsymmetric, which is why it is an extension of the point to plane (3.2) and not of the
plane to plane (3.6) error, even though the difference between both normals is minimized.

Nevertheless, the authors explain clearly an important detail which was left unexplained
in GICP, namely why it is important to impose the disc shape prior (3.5). The reason is that
because of sensor noise, even planar surfaces will not have zero curvature (2.24), captured
by the ratio of eigenvalues. When summing up noisy covariance estimates, the resulting
information matrix will become uninformative. To reduce the effect of sensor noise onto
the error metric, the prior knowledge is incorporated.

3.2 Actuated 2D LiDAR based SLAM

The groundbreaking work of [BZ09, BZF12, KZB16] between 2009 and 2015 forms the basis
of our approach. They were among the first to publish a 3D SLAM algorithm that works
with an actuated 2D LiDAR on a moving platform. An initial trajectory estimate is refined
in a time-windowed fashion using a specifically developed ICP variant stated as a NLS
(2.26) problem. The algorithm seeks to estimate the continuous trajectory over two sweeps
instead of a relative transformation between two scans. It can be summarized by the fol-
lowing two steps, modified from the original ICP steps (section 3.1), which are repeated
until convergence:

I Compute correspondences between two sweeps, i.e. for each surfel ai in sweep a,
transformed into world coordinates by the current trajectory estimate at the surfel’s
mean timestamp T (τai), find its closest surfel in sweep b, transformed via T (τbi).

II Update the current trajectory estimate T = δT ⊕ Tprev via small corrections δT that
minimize the alignment errors between corresponding surfels.

The notion of sweep and surfel follow (section 3.2.1). Details of this algorithm and its im-
proved version (section 3.2.2) are discussed in the light of our ICP taxonomy (section 3.1.1).
The author’s latest journal article (section 3.2.3) employs the same algorithm on a quadro-
copter. The method presented here introduces some useful concepts, but nevertheless has
several flaws, which will be discussed in the main part of this work (section 4.1).

3.2.1 Spinning Laser 2009

In the first conference paper [BZ09] the authors mount the 2D laser scanner SICK LMS-
291 (fig. 2.2a) on a spinning platform (fig. 1.1b). The device is rotated around the center
of its scan plane at a rate of 1

2Hz. The data collected in one half-revolution (sweep), last-
ing 1s, covers the entire space visible to the sensor. An accurate encoder on the spinning
platform gives the orientation of the LiDAR scanner with respect to the platform, which
allows initially aggregating the scans from one sweep. However, significant platform mo-
tion can occur during the duration of a sweep, so the platform trajectory during this time

26

3.2 Actuated 2D LiDAR based SLAM

must also be taken into account. Instead of using a traditional scan-matching algorithm
which registers rigid 2D LiDAR scans, the authors thus developed a sweep-matching algo-
rithm registering deformable 3D sweeps. The sweep-matching algorithm is an extension
of the ICP scan-matching algorithm applied to surface element (surfel)s. These are local
surface features with strong shape characteristics (section 4.5.2), either planar or cylindri-
cal, computed for each sweep. Modifications to standard ICP, according to the taxonomy
(section 3.1.1) are the following:

1. Selection: Instead of the original laser scan points, surfels are used. These are gener-
ated as follows: For each sweep, the space is discretized into a pyramid of 3D voxel-
grids ranging from 0.5m to 8m. Each pyramid level additionally consists of voxels
offset by half the voxel size to account for quantization artifacts. For all the points
within a sweep that fall in the same voxel, their centroid as well as their covariance
matrix is calculated. If the covariance matrix suggests that the voxel describes planar
or cylindrical features and if there are a sufficient number of points inside the voxel
(for very fast motion undersampling occurs), a surfel is generated.

2. Matching: Corresponding surfels between two sweeps are matched based on the
Euclidean distance between 9D vectors formed by concatenating centroid µ, normal
e0 and cylinder axis e2, with appropriates weights of each 3D component vs the
other, of a surfel.

3. Weighting: Matches are weighted by
√

λ2
λ0

(1 − λ0
λ2

) to account for uncertainty in the
normal direction. To account for outliers, Cauchy weights are applied as robust
Lorentzian cost function to the residuals in an M-estimator framework.

4. Rejecting: nothing is rejected

5. Error metric: First, one has to compute the eigen decomposition (2.23) of the matched
surfels covariance matrices Σai∪bi = Σai + Σbi from sweeps a and b.

• Planar surfels should have:
a) their centroids aligned ~nTai∪bi(µai − µbi) = 0 in direction of their common
surface normal ~nai∪bi = e0/

√
λ0. 1

b) their normal directions aligned ~nai × ~nbi = 0

• Cylindrical surfels should have their centroids aligned CTai∪bi(µai − µbi) = 0

orthogonal to the cylinder axis: Cai∪bi = [e0/
√
λ0, e1/

√
λ1]

Scaling the eigenvectors by the inverse square root of their corresponding eigenval-
ues aims to consider the measurement uncertainty.

6. Minimization: Minimization is carried out by first discretizing the trajectory cor-
rections over a sweep interval and linearly interpolating in between sample poses,
and linearizing the constraints according to the first-order Taylor expansion of an
infinitesimal rotation (2.2): δR = I + [δr]×. Then, the problem is solved iteratively
via a weighted NLS (2.26) optimization. Finally, the corrections are applied to the

1 Note the similarity to the point to plane (3.2) error metric, except that the common normal is used instead
of the normal of just one surfel.

27

3 Related work

previous trajectory estimate and then a cubic spline is used to reconstitute a smooth,
continuous trajectory.

Additional constraints: The sweep-matching algorithm differs from standard ICP, be-
cause additionally to the surfel matches, further constraints are added to the optimization
problem:

• Smoothness constraints: (Ti+1)−1 ⊕ Ti = (Ti)
−1 ⊕ Ti−1

• Initial conditions: the velocity at the beginning of sweep b is constrained to maintain
continuity with the velocity at the end of sweep a.

Initialization: The trajectory of sweep a is initialized with that of the previous sweep,
the trajectory of sweep b with a motion model that decelerates from the initial velocity at
the end of sweep a to zero velocity.

3.2.2 Zebedee 2012

Figure 3.3: Zebedee - a spring-mounted 3D range-sensing system [BZF12].

In their second conference paper [BZF12] the authors removed the spinning platform
and instead mount the LiDAR scanner together with an IMU on a spring, which is pas-
sively actuated by the movement of a vehicle or even a walking person. The resulting
irregular and nondeterministic motion of the sensor head provides some challenges, in
particular, there is no notion of a sweep anymore. Instead of the encoder, the IMU is now
used to initially aggregate the scans and initialize the trajectory. The differences to the
sweep-matching algorithm (section 3.2.1) of their previous work [BZ09], according again
to the taxonomy (section 3.1.1) are the following:

1. Selection: Since there are no more sweep, space and time are discretized into a 4D
voxel-grid, where each 3D spacial cell can contain multiple clusters of points, de-
pending on their discretized time values. Thus, the allowed timespan of points in-
side a cluster can be seen as a nominal sweep period, because the spring will still induce
some form of periodic movement, e.g. nodding where the elevation angle approx-
imately forms of a sine-wave. Only planar surfels are used, not cylindrical ones.
Clusters with a small rotational velocity component normal to the scan plane are
discarded.

28

3.2 Actuated 2D LiDAR based SLAM

2. Matching: Corresponding surfels are matched based on the Eclidean distance be-
tween 6D vectors formed by concatenating centroid and normal e0. This is also the
first time they mention approximate nearest neighbor queries in a kd-tree to get these
matches. Since there are no more sweeps, we can’t match sweep a against sweep b,
but instead correspondences can arise from any two surfels if their timestamps differ
by more than half of the nominal sweep period. These quality matches over a larger
time span provide more useful constraints for trajectory optimization.

3. Weighting: The soft outlier threshold r̄, used to compute the weights wi via the
Lorentzian function wi = (1 + (rij/r̄)

2)−1 on the residual rij , is initially large and
decreased at each iteration to increase the basin of convergence.

4. Rejecting: only reciprocal surfel matches are retained

5. Error metric: Instead of three error metrics, only one is used. Planar surfels should
have their centroids aligned ~nTai∪bi(µai−µbi) = 0 in direction of their common surface
normal ~nai∪bi = e0/

√
σr + λ0, where the sensor measurement noise σr is further

incorporated into the error metric compared to the previous paper.

Additional constraints: The trajectory is now processed in a time-windowed segment,
which is advanced by a fraction of its length as new data arrives. This sweep-matching
algorithm differs from the previous one [BZ09] by incorporating the following additional
constraints into the optimization problem:

• Initial conditions: instead of constraining the velocity at the border of consecutive
sweeps, continuity is enforced by penalizing any changes to the first three trajectory
correction samples in the current time-windowed segment.

• IMU measurement deviations are used instead of smoothness constraints. The errors
on translational acceleration and rotational velocities are as follows:

seω(τ) = Σ
−1/2
ω

(
sω̃(τ)− dr(τ)

dτ

)
(3.7)

wea(τ) = Σ
−1/2
a

(
r(τ)⊕ sã(τ)− d2

wt(τ)

dτ2
− wg

)
(3.8)

Note that wea(τ) is expressed in the world frame w, but seω(τ) in the IMU sensor
frame s. The second derivative of the trajectory wẗ(τ) = d2wt(τ)

dτ2
with respect to time

τ , as well as the gravity vector wg are both expressed in the world frame w, thus we
have to rotate the raw acceleration measurement sã into the world frame w before
subtracting these quantities. Σ denotes the measurement covariance, from which we
take the inverse square root so that the squared norm eT e of the residual e is scaled
by the information matrix Σ−1.

• IMU bias estimation: small correction updates to the 6 DoF bias vector on the raw ac-
celeration and rotational rate measurements are included in the state and considered
when computing the IMU measurement deviations.

29

3 Related work

• Timing latency estimation: Since they are now using two sensors instead of one, un-
synchronized clocks in both devices will have a severe effect on the outcome. Thus
the optimization state is further augmented with an extra dimension to estimate tim-
ing errors between IMU and LiDAR.

Initialization: The first trajectory segment is initialized by integrating accelerometer and
gyro measurements from the IMU. During the time-windowed optimization, IMU data is
only required to propagate the trajectory for the remainder of the current time window.

Operating modes: To reduce the drift during the time-windowed processing, the authors
suggest to include surfel matches over longer timespans, what they call fixed views. In
addition to processing the trajectory sequentially in time windows, one can also optimize
the entire trajectory at once in a subsequent global optimization step, given a good initial
guess. This should improve the global consistency of the reconstructed trajectory.

3.2.3 Bentwing 2016

In the latest journal article [KZB16] the laser scanner is mounted below a quadrocopter
and passively actuated by the downdraft from the blades to perform a rotational motion
similar to the first work [BZ09]. However, the authors employed the algorithm of the
previous work [BZF12] with only minor modifications by rejecting (4.) grossly distant
matches, which is actually a crucial step in ICP to make it converge properly. It allows to
get rid of wrong correspondences after the transformation update, which can only partially
be corrected for with robust cost functions. Initialization of the IMU bias is done while the
platform is stationary before takeoff. Additional constraints are added to the optimization
problem to estimate the physical offset between LiDAR and IMU base frames to account
for any inaccuracies during calibration.

3.3 Interpolating orientations

The need to interpolate smoothly between orientations comes originally from the com-
puter graphics domain, in particular for keyframe or character animation. It was a major
research topic from 1985 until 1995. However it took about 20 years for these ideas to be
adopted in the computer vision domain, which usually has the inverse problems to solve.
In this section, we will thus revisit the classical research done about this topic in the com-
puter graphics domain so that we can apply it to our approach later on. The background
for this section is a good understanding of quaternions when used to represent orientations
(section 2.1.2) and of the usual interpolation methods in Euclidean space (section 2.3). In
this section we will present four different orientation interpolation methods called renor-
malized LERP, SLERP, SQUAD and a cumulative cubic B-spline approach. These will be
evaluated later on (section 4.2.3) to help us pick a suitable trajectory representation needed
for our approach.

30

3.3 Interpolating orientations

Renormalized LERP

Linear interpolation (LERP) can be used to interpolate between two orientations, given as
the two unit quaternions q0,q1. We just need to apply LERP (2.16) to the 4 quaternion
components. But then, the intermediate quaternions q(u) would not be of unit length
anymore. Thus we have to renormalize the quaternion by dividing it through ‖q(u)‖.
Unfortunately, the resulting unit quaternion curve will not appear smooth, because the
intermediate quaternions are unequally spaced, meaning the angular velocity along the
path varies (fig. 3.4a).

(a) renormalized LERP: The straight line connect-
ing the two quaternions is divided into line seg-
ments of equal length. Projection lines from the
center of the circle through the segment bound-
aries are drawn. The angle between the projec-
tion lines is unequal and so are the lengths of the
circular arc segments.

(b) SLERP: The angle between the two
quaternions is divided into equal parts.
The lengths of the circular arc segments
are thus also equal.

Figure 3.4: Two different methods to interpolate between 2 unit quaternions q0,q1. The space of
unit quaternions is spherical due to the unit constraint, which is why circular arcs are
shown here. [Han06, Fig 10.4, 10.5]

Spherical linear quaternion interpolation (SLERP)

The correct way to interpolate two unit quaternions is to do the interpolation with u ∈ [0, 1]
on the surface of the sphere S3, which [Sho85] termed SLERP:

slerp(q0,q1, u) = q0(q̄0q1)u = q0 exp(u log(q̄0q1)) (3.9)
SLERP

Application of SLERP (3.9) produces a geodesic in S3, with the property of constant an-
gular velocity along the corresponding path in SO(3). This is due to the fact that the in-
termediate quaternions are equally spaced on this geodesic, which is a path on the surface
of a sphere (fig. 3.4b). If interpolating more than 2 orientations, a piecewise application is
possibly, but provides only C0 continuity, just as its counterpart in Euclidean space.

31

3 Related work

Spherical cubic spline quadrangle quaternion interpolation (SQUAD)

To gain higher order continuity, the idea of uniform composite cubic bezier curves is ap-
plied to quaternion interpolation in [Sho87]. Similar to the de Casteljau construction, but
using SLERP (3.9) instead of LERP (2.16), a cubic Bezier curve segment is defined by the 4
control quaternions qi, si, si+1,qi+1. To ensure C1 continuity across consecutive segments,
the inner control quaternions si, si+1 are computed in a special way from 3 given quater-
nions of the original sequence to interpolate. For si, the idea is to approximate the deriva-
tive or angular velocity at qi by central differences, using qi−1,qi+1, and then placing si to
assure C1 continuity in quaternions space. The same is done for si+1 at qi+1 Since the orig-
inal paper [Sho87] is not available anymore, the definition of SQUAD, using quaternion
exponentiation (2.5) and logarithm (2.6), is replicated in [DKL98, Def. 17]:

si = qi exp

(
−

log(q−1
i qi+1) + log(q−1

i qi−1)

4

)
squad(qi, si, si+1,qi+1, u) = slerp

(
slerp(qi,qi+1, u), slerp(si, si+1, u), 2u(1− u)

)
(3.10)

SQUAD

Note that the iterated application of slerp in squad is a little different than the construction
of a cubic Bézier curve (2.17) using the de Casteljau construction, which can be expressed
using iterated slerp as follows:

bezier(qi, si, si+1,qi+1, u) = slerp
(
slerp(qi, si, u), slerp(si+1,qi+1, u), u

)
In contrast to that, the construction of squad is actually a parabolic blending using bilinear

interpolation, which is nicely explained in [WW91]: Consider the control polygon, a rect-
angle made up by the control vertices qi, si, si+1,qi+1 in the u-v coordinate system with qi
at the origin:

si − − b − − si+1

|

· · ·
q · · ·

. . . | . . .
qi − − a − − qi+1

The two inner slerps of squad interpolate linearly with an amount of u ∈ [0, 1] along the
horizontal edges to get the intermediate points a,b. These will then be interpolated verti-
cally by the outer slerp with an amount of v = 2u(1− u) to get the final point q. Note that
v is quadratic in u, it is 0 for u = 0 and u = 1, thus the final curve starts at qi, ends at qi+1,
has its maximum height of v = 0.5 at u = 0.5 and thus traces out a parabola, as indicated
by the dots.

Cumulative B-spline quaternion curve

The curve given by SQUAD (3.10) is C1 continuous and has local control. Nevertheless, a
change in a control point requires to recompute some interior control points to maintain
this continuity. This becomes tedious when optimizing over trajectories. Ten years later,
the idea of Shoemake is generalized to arbitrary basis functions, gaining C2 continuity for

32

3.4 Continuous time estimation

free, with the introduction of the transformation to cumulative basis form [KKS95]. Since
this is the curve we will be using, we will discuss it later (section 4.2.2) in depth.

3.4 Continuous time estimation

In this section, the theory and recent progress in continuous time estimation is presented.
We start with an article motivating the need for such methods, and then discuss four dif-
ferent publications that apply the theory in different applications. Special focus is given
to the used rotation parameterization and interpolation method. Some of the findings of
these works are incorporated into our approach later on.

Continuous time SLAM (CT-SLAM)

In the conference paper [FBS12], the authors motivate the need for continuous time esti-
mation methods in robotics because:

• High-rate sensors such as IMU’s capture data at high rate, which in discrete estima-
tion methods would require to include a pose variable in the state for each measure-
ment, making it very large.

• Continuously capturing devices such as sweeping LiDAR scanners or rolling shutter
cameras, when moved during acquisition, produce distortion artefacts if their mea-
surements are handled as discrete snapshots in time.

They bridge the gap between SLAM and continuous-time estimation theory, which has ex-
isted for longer than SLAM, by providing a derivation of SLAM in continuous time, which
they call CT-SLAM. As an specific implementation, they use a B-spline basis represen-
tation of the trajectory with the favourable property of local support and simple analytic
derivates, needed to synthesize IMU measurements. The rotation is represented minimally
using the Cayley-Gibbs-Rodrigues vector, a minimal global representation of rotations that
has - like all minimal representations of rotations - singularities. For evaluation purposes,
the authors pursue an IMU to camera calibration experiment.

In their subsequent journal article [FTBS15], they additionally give a detailed overview
over current continuous-time state estimation methods and add another experiment where
the IMU data is used to compensate rolling shutter artefacts of a moving camera and com-
pare the results to a global shutter camera which is mounted next to it.

Continuous ICP (CICP)

The authors of [ABB14] use the same interpolation method and rotation parameterization,
with the only minor difference of implementing the B-spline basis functions using the de
Boor algorithm instead of the matrix definition.

They apply it to registering scans using ICP from actuated LiDAR, which they term
CICP. This is similar to the work of [BZ09] as discussed in-depth in the previous section,
with the following differences:

33

3 Related work

1. Due to the global parameterization of rotations, the authors are no longer limited to
estimating small motion corrections, a constraint arising from the linear small-angle
approximation (2.2) used to represent orientations in [BZ09].

2. Using a B-spline instead of linear interpolation automatically ensures smoothness
across segment boundaries, which [BZ09] had to enforce in the optimization through
additional smoothness constraints.

3. However, [ABB14] minimizes point-to-point correspondences instead of surfel matches,
which might be faster to compute, but narrow the basin of convergence.

Their experimental findings suggest that the B-spline basis has to be at least of degree
three, i.e. a cubic spline. Furthermore, when outliers in the point-to-point matches are
present, regularization via robust L1 cost functions improves accuracy. In their experiment
with a spinning Hokuyo laser scanner (fig. 2.2c), they use Visual Odometry (VO) instead
of an IMU to initially undistort the scans.

Spline Fusion

In [LPPS13, PPLS15], the authors employ continuous time estimation for rolling shutter
camera calibration and visual-inertial SLAM. As a continuous-time representation, they
use the cumulative cubic B-spline approach of [KKS95], but applied to SE(3) and its Lie
algebra se(3) instead of quaternions. This allows for straightforward visual-inertial fu-
sion, because a generative model for synthetic inertial measurements using the analytic
derivatives of this trajectory representation is also derived. It allows to incoorporate IMU
measurements naturally into the estimation process, which act as a regularizer for the vi-
sual feature matches. The authors choose the SE(3) parameterization because it is free
from singularities and models torque-minimal trajectories. Originally, we wanted to im-
plement this trajectory representation for use in our own work. They provide the full
derivation and detailed formulas needed for the trajectory derivatives needed to synthe-
size IMU measurements, which helps a lot in the implementation process. However, we
found out that these torque minimal trajectories, as implemented in the paper, have the
unconvenient property of coupling orientation with translation (section 4.2.4). Also, there
is a lot of matrix multiplication involved to compute the derivatives. Due to the redun-
dency of this parameterization, this slows down optimization when residuals depend on
time derivatives of the trajectory. Even worse, it is not described how convert the result of
the matrix multiplication back to an angular velocity vector.

Relative continuous-time SLAM

This line of work [AB13, AMB15] in particular addresses the performance issues of incoor-
porating loop-closures when an absolute trajectory representation is used. When a loop
closure occurs, all of the trajectory base functions have to be re-evaluated to propagate this
change. In discrete-time, the problem was overcome by introducing a relative pose-graph,
in which loop-closures take only constant time to incorporate because only a constant size
subset of all the relative poses have to be updated. To convert this idea to continuous
time, the authors look at the infinitesimal of relative poses, linear and angular velocities.

34

3.4 Continuous time estimation

They propose to use a continuous time 6D velocity curve, concatenating linear and angular
velocities and interpolating with a standard cubic B-spline. This is a truly minimal repre-
sentation of rigid body motion and avoids singularities. However, the benefit of constant
time updates in the case of loop-closures comes with the cost of having to integrate the
whole trajectory up to a specific point in time when an absolute pose is needed.

Attitude estimation using B-spline on Lie Groups

The journal article [SFSF15] extends the theory of cumulative cubic B-spline unit quater-
nion curves to general Lie groups and arbitrary spline order. The most surprising discov-
ery in the experiments was the strong influence of the spline order on the expressivenes
of the curve. In particular, by increasing the spline order from 4 to 5, one can half the
number of segments (from 20 to 10), or equivalently double the knot spacing, and still get
the same accuracy. To my knowledge, all previous continuous time estimation methods
silently concluded that C2 continuity of the trajectory is enough to accuartely model the
acceleration of IMU’s. However, a C2 continuous trajectory is only piecewise linear when
derived twice, and can thus only model linear interpolation of accelerations between two
knots. A higher order continuous curve allows for more freedom of the acceleration curve
between two knots and thus enables to increase the knot spacing. It is thus expected that
future research pays more attention to the 5th or 6th order B-spline.

Furthermore, the authors have the nice idea to model the slowly time-varying IMU bias
error with a 3D B-spline, sharing the same knots as the continuous trajectory. To regularize
this spline so that it is really slowly varying, they add the derivative of this spline as an
error term into the cost function to optimize, pulling the derivatives towards zero.

35

3 Related work

36

4 Approach

After having covered the theoretical background and previous work, we finally come to
the development of our main algorithm. It achieves improvement compared to existing
approaches by carefully combining different ideas (section 4.1). In (section 4.2), we eval-
uate several continuous time trajectory representations in an experimental manner before
choosing the one that suits us best. The high-level overview of our algorithm as well as the
pseudo-code is given (section 4.3), before diving into the details: We show how IMU mea-
surements can be synthesized from our trajectory representation (section 4.4) and how
they can be used to initialize the trajectory. The next section shows how surfel matches
originating from LiDAR can be incorporated (section 4.5). The overall model for our NLS
problem and its optimization (section 4.6) concludes this chapter.

4.1 Motivation

The main inspiration [BZ09, BZF12, KZB16] for our algorithm was previously presented
(section 3.2). In the following, we address certain limitations and suggest alternatives that
are beneficial for our final algorithm.

Use of infinitesimal rotations. Due to singularities, the authors are limited to estimating
trajectory corrections instead of the full trajectory. In each publication, a slightly different
trajectory representation and update rule is employed:

[BZ09] : T = [δr⊕ r , δt + δr⊕ t]T ≡ δT ⊕ Tprev
[BZF12] : T = [δr⊕ r , δt + t]T ≡ T t

prev ⊕ δT ⊕ T r
prev, Tprev = T t

prev ⊕ T r
prev

[KZB16] : T = [δr⊕ r0, δt + t0]T ≡ T t
base ⊕ δT ⊕ T r

base, Tbase = [r0, t0]

Because of the infinitesimal rotation (2.2) approximation errors, the authors furthermore
had to change the rigid body motion composition: In particular, the update on the transla-
tion part δt+δr⊕t [BZ09] is done without rotating first δt+t in [BZF12]. The authors claim
that this non-standard formulation of rigid body motion composition is preferable, since
translations are expressed in the global frame instead of the sensor frame. The term δr⊕ t
is problematic for large t due to errors introduced via the approximation. In the last pa-
per [KZB16], the trajectory is decomposed into a baseline trajectory and small corrections,
which allows only small corrections to be modeled correctly because of the linearization
involved.

These limitations can be resolved with unit quaternions, which are singularity free and
can be employed in optimization using their related Lie algebra of pure quaternions as
local parameterization.

37

4 Approach

Use of linear interpolation to compute the Jacobians and of a spline to evaluate the tra-
jectory since C2 continuity for the IMU measurements is required. This actually means
using derivatives of a different function in the optimization than for its evaluation. Fur-
thermore, the usage of the spline is only mentioned briefly leaving important questions
regarding data fitting and implementation details open.

To discretize the trajectory over a sweep interval, we compute poses at increments of 0.2s and later
use a cubic spline to reconstitute a smooth, continuous trajectory. [...] Due to the discretization of
the trajectories, and the fact that the voxel timestamps are unlikely to fall exactly on the trajectory
sample times, the match constraints are linearly interpolated between the closest two trajectory
samples. [BZ09]

For purposes of computing the Jacobian, we assume that the trajectory corrections are linearly
interpolated in time between the trajectory samples. [BZF12]

Implementationally, trajectories (and corrections) are stored as samples at a reasonable frequency
for the motion bandwidth (e.g. 100 Hz) and a spline interpolates transformations for times between
the samples. [...] One key difference between our solution and the others is that ours considers cor-
rections to the trajectory in the state rather than the trajectory itself. Because the corrections can be
adequately represented at a lower frequency, this allows us to reduce the number of variables (spline
knots) required in the state while still maintaining high-frequency information from the trajectory.
[KZB16]

Instead, we propose to use a cumulative B-spline for interpolation, both to compute the
Jacobians and to evaluate the trajectory. Maintaining high-frequency information from the
IMU through the use of a static baseline trajectory with a tight knot spacing and a lower
frequency trajectory made up of corrections that serve as the state seems like a good idea.
However, to initialize the static high frequency trajectory from the IMU measurements,
one usually has to solve an optimization problem with a large state anyways. Using one
medium frequency trajectory and giving it additional expressiveness by using a higher
order spline as suggested by [SFSF15] seems to be a good trade-off.

Use of an inconvenient error metric for registration which requires to compute common
surface normals for each match. One needs to recompute the eigen decomposition (2.23)
of a sum of covariance matrices during the ICP optimization, which is quite expensive.
Furthermore, attempts to fix noise issues are not well explained.

Instead, we propose to use the plane to plane (3.6) error metric of GICP, where the noise
issues are handled by the well-received disc shape prior (3.5). This has the additional ben-
efit that one does not need the eigen decomposition of the sum of covariance matrices, but
just the matrix inverse to get the information matrix, which is much cheaper to compute.

4.2 Trajectory representation

The choice of trajectory representation is an important decision affecting design but also
final achievable accuracy of a 3D trajectory estimation approach such as ours in a major
way. The trajectory representation is uniquely determined by the rigid body motion pa-
rameterization of the base poses (section 2.1) and the interpolation method (section 2.3).

38

4.2 Trajectory representation

It should fulfill some important properties to be useful for continuous time trajectory esti-
mation (section 3.4):

• Local control so that an update of the trajectory estimate at a specific time only affects
its surroundings.

• C2 continuity of both position and orientation so that physical smoothness constraints
can be handled naturally.

• Orientation parameterization without singularities to be able to represent all possible
motions.

• As few parameters as possible to allow for efficient computation.

• Analytic derivatives with efficient formulas to be able to synthesize angular velocity and
linear acceleration measurements and use them for fast and accurate optimization.

However, the choice of which representation to use is not easy because there is no per-
fect solution. Concerning interpolation methods, there is always a trade-off between (1)
interpolation vs approximation, (2) high continuity, (3) local vs global control and (4) com-
putational complexity (section 2.3). Because an orientation has three DoF, the absolute
minimum number of parameters to represent it is three. However, there are no minimal
parameterizations without singularities. Every extra parameter used in a singularity-free
representation incurs additional constrains on the parameters that need to be maintained
during interpolation and optimization (section 2.1).

We will first discuss the confronting requirements of local control, continuity and inter-
polation vs approximation of the two most popular higher order interpolation methods
(section 4.2.1). Then, we will give implementation details on a C2 continuous approxi-
mating orientation curve without singularities and with local control (section 4.2.2). We
subsequently compare it to other orientation interpolation methods (section 4.2.3). Finally,
we compare two alternative approaches to arrive at our chosen trajectory representation
for the full rigid body motion, consisting of orientation and translation (section 4.2.4).

4.2.1 Choice between B-spline and composite Bézier curve

When interpolating many control points with C2 continuity requirements, we can either
use a B-spline (section 2.3.3) or a composite Bézier curve, which is a series of Bézier curves
or segments, where the last control point of one segment is the first control point of the
next. This ensures C0 continuity. Depending on the application, additional smoothness
requirements may be needed. Note that in contrast to B-spline basis functions (fig. 4.1e),
the Bézier basis functions (fig. 4.1d) of one segment have no influence into neighboring
segments. Thus we cannot get this continuity for free, but have to place interior control
points in a special way.

C1 continuous curves additionally need to have identical tangents at the segment bound-
aries. This can be ensured by coupling the positions of the directly adjacent inner control
points on either side of the segment boundary. These three points need to form a line, with
the control point joining the two segments in the middle. For example (fig. 4.1a) the green,
red and violet control point form a line and the red point is in the middle.

39

4 Approach

C2 continuous curves additionally need identical curvature at the segment boundaries.
This requires two more interior control points than in the C1 case to be placed in a special
way. The vector joining these two control points has to be twice the vector joining the
inner control points from the C1 requirement. For example (fig. 4.1b), the vector joining
the orange and brown point is twice the vector joining the green and the violet point. Note
that it is not a requirement that the segment boundary control point is in its middle as it is
in the example.

(a) composite C1 Bezier curve (b) composite C2 Bezier curve (c) B-spline

(d) composite Bezier curve basis (e) B-spline basis

Figure 4.1: Comparison of composite cubic Bezier curves with a uniform cubic B-spline, defined by
7 control points. The segments in the basis function plot are shaded in the same color as
the curve segment influenced by these basis functions.

Local control vs interpolation

C2 continuity requires at least cubic curves. However, to gain C2 continuity, a cubic com-
posite Bézier curve loses local control, because to enforce C2 continuity, all the control
points become dependent on each other. The constraints on interior control point place-
ment propagate through the whole curve, so if a single control point moves, the whole

40

4.2 Trajectory representation

curve needs to be re-evaluated.1

On the other hand, cubic B-splines have C2 continuity and local control, but they lose
the interpolation property of a composite cubic Bézier curve, they only approximate the
control points. The intuitive requirement that an interpolation method should actually
interpolate the given sequence of control points is actually not a requirement in contin-
uous time estimation, as stated in the introduction of this section. It is merely sufficient
that we can control the shape of the resulting curve roughly by moving control points,
which do not lie on the curve but are only approximated by the curve. This complicates
initialization of the curve, because one has to initialize the control points with meaning-
ful values. However, only locally controllable curves make trajectory estimation feasible.
Only a small subset of control points has to be updated when new measurements arrive
and the curve automatically stays C2 continuous. Since we will be using the base poses of
the trajectory representation as the state to optimize in NLS optimization, a rough initial-
ization is usually sufficient. Constraints specified on the curve or its derivatives let it then
converge iteratively to a curve that fits specified properties. So to summarize this section:

• A C2 continuous composite cubic Bézier curve interpolates the control points but
has global control.

• A C2 continuous cubic B-spline has local control but only approximates the control
points.

4.2.2 Cumulative B-spline quaternion curve

A B-spline (2.19) in its standard form is given as sums of basis functions with control
points as coefficients (2.19): p(τ) =

∑n
i=0N

k
i (τ)pi . Using the cumulative basis Ñk

i (τ) =∑n
j=iN

k
j (τ) with the property of Ñk

0 (τ) = 1, τ > τ0 due to the partition of unity, the B-
spline can be rearranged into cumulative form as follows [KKS95]:

p(τ) = p0 +

n∑
i=1

Ñk
i (τ)(pi − pi−1) (4.1)

cumulative B-spline

Instead of summing over all control points, we take the first control point as an absolute
anchor point and sum up differences of the other control points, with the weights adapted
to get the same result. In Euclidean space, the difference between consecutive control
points pi−i and pi is the time difference between those points ∆τ = τi − τi−1 times the
velocity vi∆τ = −pi−1 + pi.

While we cannot apply the B-spline in its standard form to the Lie group of unit quater-
nions (because the group is not closed under addition, meaning the weighted sum of unit
quaternions might not be unit anymore), the concept of velocity also exists in quaternion
space, more specifically in its associated Lie algebra of pure quaternions. These in term
can be interpreted as angular velocity vectors: ωi∆τ = log(q−1

i−1qi).

1 There are actually only two remaining DoF one can choose after specifying all the segment boundary
control points, namely either the tangent at the first and the last control point or alternatively, the cur-
vature. In certain applications, this can be a desired behavior. Given the boundary conditions and the
segment boundary control points to interpolate, the positions of all the inner control points don’t have to
be supplied but can be calculated by solving an equation system incorporating the above constraints.

41

4 Approach

The Lie algebra of pure quaternions allows for multiplication by a scalar weight as
needed for interpolation. However, it can only represent rotation differences instead of
absolute orientations, namely a rotation around a fixed axis with constant angular velocity.
Thus we need to use the cumulative form of the B-spline, applying these relative rotation
differences in sequence to the first control quaternion.

Replacing p(τ) with q(τ), p0 with q0, vi with ωi and summation in the Lie algebra with
(quaternion) multiplication in the Lie group (exp

∑n
i=1 αi =

∏n
i=1 expαi), we arrive at:

q(τ) = q0

n∏
i=1

exp
(
Ñk
i (τ) log(q−1

i−1qi)
)

(4.2)
cumulative quaternion B-spline

Uniform cubic cumulative quaternion B-spline

When using uniform time intervals ∆τ = τi+1 − τi∀i ∈ [0, n − 1] as control point spacing,
a uniform cubic cumulative quaternion B-spline basis can be obtained via matrix multipli-
cation [PPLS15] :

Ñ(u) = [u3, u2, u, 1] C , C =
1

6


0 1 −2 1
0 −3 3 0
0 3 3 0
6 5 1 0

 (4.3)
cumulative B-spline matrix

Note that a column in this cumulative basis form matrix is obtained by summing up the
columns of the standard basis form matrix (2.20) with equal or greater index. In particular,
note that the rightmost column is the same for both bases.

We want to evaluate the cubic quaternion curve q(τ) at a specific time τ ∈ [τi, τi+1). Thus
we have to transform the global time variable τ to the segment local parametric variable
u. Furthermore, we need to find out the index i of the knot shortest before the current
evaluation time:

i =
τ − τ0

∆τ
, u =

τ − τi
∆τ

The knot index gives us the corresponding 4 control quaternions qi−1,qi,qi+1,qi+2 re-
sponsible for this segment. The quaternion curve can thus be evaluated simply as:

ωi = log(q̄i−1qi)

q(τ) = qi−1 exp
(
ω1Ñ1(u)

)
exp

(
ω2Ñ2(u)

)
exp

(
ω3Ñ3(u)

)
(4.4)

orientation curve

Note that when evaluated at u, Ñi(u) is a 0-based row vector with 4 entries indexed by
i. The cumulative B-spline basis has the property that Ñ0(u) = 1, which is why we don’t
need a factor for qi−1. Furthermore, we don’t need the exponential mapping here because
qi−2 is defined to be the identity rotation, which leads to exp(log(q̄i−2qi−1Ñ0(u)) = qi−1

42

4.2 Trajectory representation

4.2.3 Orientation interpolation methods

So far we have seen multiple combinations of rotation parameterizations and interpolation
methods:

1. Unit quaternion + renormalized LERP (section 3.3)

2. Unit quaternion + piecewise SLERP [Sho85] (section 3.3)

3. Unit quaternion + spherical Bezier curve (SQUAD) [Sho87] (section 3.3)

4. Unit quaternion + cumulative (Bezier,Hermite,B-spline) [KKS95] (section 4.2.2)

5. Infinitesimal rotation + linear interpolation [BZ09, BZF12, KZB16] (section 3.2)

6. Cayley-Gibbs-Rodrigues + basis B-spline [FBS12, FTBS15, ABB14] (section 3.4)

7. SE(3) and se(3) + cumulative uniform cubic B-spline [LPPS13, PPLS15] (section 3.4)

8. Angular (and linear) velocity + uniform cubic B-spline [AB13, AMB15] (section 3.4)

9. Arbitrary Lie Group + cumulative B-spline of arbitrary order [SFSF15] (section 3.4)

We asked ourselves which method suits our needs the best. In [DKL98, Ch. 5], the
authors established a framework to visually judge and compare different interpolation
methods of orientation keyframes. In particular, they provide a sequence of 6 keyframes
(table 4.1) that can nicely be plotted on one hemisphere of the usual sphere S2. A trajectory
in SO(3) can thus be visualized through a curve on the surface of the sphere. Its quality
can then be visually judged by evaluating the smoothness of the curve as well as of its
derivate, the angular velocity, whose norm is also plotted.

i rotation angle θ ∈ [−π, π] rotation axis ω ∈ R3 quaternion q = [w, x, y, z] ∈ S3

0 1 (1, 3, 0) [0.88, 0.15, 0.45, 0]
1 1.9 (-1, 0, 0) [0.58, -0.81, 0.00, 0]
2 0 (-2, 1, 0) [1.00, -0.00, 0.00, 0]
3 -2 (3, 4, 0) [0.54, -0.50, -0.67, 0]
4 -1 (-1, 4, 0) [0.88, 0.12, -0.47, 0]
5 1 (2, 3, 0) [0.88, 0.27, 0.40, 0]

Table 4.1: Key frames from [DKL98, Table 5.1]. Assumed that the last rotation axis should be (2,3,0)
instead of (1,3,0) to not coincide with the first axis. Note that all z components are chosen
to be 0, which allows to drop one dimension and visualize the unit quaternions on the
surface of the usual sphere S2 in R3, instead of S3.

43

4 Approach

0 1 2 3 4 5
0

1

2

3

4

i
an

gu
la

r
ve

lo
ci

ty
Figure 4.2: Slerp: The keyframes are interpolated piecewise using slerp [Sho85], resulting in local

control. However, the curve is only C0 and thus not differentiable at the keyframes. The
angular velocity graph is piecewise continuous, meaning that the angular velocity is
constant in between keyframes. (The steep lines at the keyframes don’t appear vertical
here due to numerical computation of the angular velocity using central differences.)

0 1 2 3 4 5
0

1

2

3

4

i

an
gu

la
r

ve
lo

ci
ty

Figure 4.3: Squad: The curve of squad [Sho87] is C1 and thus at least once differentiable every-
where. The angular velocity graph is continuous and has minima at the keyframes.
Changes of one control point only propagate to the immediately neighboring segments,
thus we have local control.

44

4.2 Trajectory representation

0 1 2 3 4 5
0

1

2

3

4

i

an
gu

la
r

ve
lo

ci
ty

Figure 4.4: Bezier: renormalized. The curve looks very similar to Squad, but is actually a uniform
cubic Bézier curve of the quaternion coefficients ∈ R4 with subsequent renormalization.
The segments are joined with C2 continuity requirements, thus we have global control.
Due to the iterated linear interpolation of the quaternion coefficients in the de Castel-
jau algorithm and subsequent renormalization, the angular velocity between keyframes
goes up and then down again. Due to the C2 continuity requirement, these ’wiggles’ are
more pronounced than in Squad, which is only C1 continuous.

0 1 2 3 4 5
0

1

2

3

4

i

an
gu

la
r

ve
lo

ci
ty

Figure 4.5: B-spline: The curve is C2 and implemented with the uniform cumulative cubic B-spline
in SO(3) as introduced by [KKS95] and used in [LPPS13, PPLS15]. Two phantom points
are placed so that the curve is defined over the duration of all keyframes while interpo-
lating the first and last one. The angular velocity graph shows that this curve minimizes
angular accelerations. Furthermore, it has local control. However, these benefits come
at the cost that the inner keyframes are only approximated.

45

4 Approach

Summary

Out of the 9 mentioned methods, we evaluated the four that are based on unit quater-
nions, since this parameterization is singularity free and only needs one additional param-
eter compared to minimal representations. Only two of them have C2 continuity (fig. 4.4)
(fig. 4.5). Out of these, only one has local control, which is the cumulative cubic B-spline
representation for the orientation curve. The fact that it only approximates doesn’t mat-
ter in optimization (section 4.2.1). Note that the orientation curve is the same for [KKS95]
using quaternions and [LPPS13, PPLS15] using transformation matrices, but the latter pro-
duces a translation curve with some unwanted properties, as we will see in the next sec-
tion.

4.2.4 Rigid body motion interpolation methods

So far we only looked at interpolating orientations to get a continuous curve q(τ) ∈ S3

doubly covering R(τ) ∈ SO(3). However, a rigid body motion additionally consists of a
translational part t ∈ R3 that also needs to be interpolated. We introduced two different
possible parameterizations for the full rigid body motion (section 2.1.3), namely (q, t) and
T, which differ in the way interpolation for the translational part is carried out.

Interpolating two keyframes

Let us first consider just two keyframes:

i translation t rot. angle θ rot. axis ω quaternion q

0 [0,0,-1] π/3 (1, 0, 0) [0.87, 0.5, 0, 0]
1 [0,0,1] −π/3 (1, 0, 0) [0.87, -0.5, 0, 0]

Table 4.2: Full rigid body motion keyframes

Interpolating SO(3) and R3 In Computer Graphics Imaging (CGI), one usually sepa-
rately interpolates the orientation and translation of the two keyframes, e.G. by applying
SLERP (3.9) on q0,q1 and LERP (2.16) on t0, t1:

slerpCGI
(
(q0, t0), (q1, t1), u

)
=
(
slerp(q0,q1, u), lerp(t0, t1, u)

)
slerp(q0,q1, u) = q0 exp(u log(q̄0q1))

lerp(t0, t1, u) = t0 + u(t1 − t0)

Interpolating SE(3) An alternative way to interpolate two rigid body motions is a slerp-
like construction in the tangent space se(3) of SE(3):

slerpSE(3)(T0,T1, u) = T0 exp
(
u log(T−1

0 T1)
)

log(T−1
0 T1) = log

[
RT

0 R1 RT
0 (t1 − t0)

0T 1

]
(4.5)

SE(3) logarithm

46

4.2 Trajectory representation

However, the interpolation of the translational part does not follow the shortest path be-
tween the two keyframes (fig. 4.6). Instead, the intermediate translations somehow de-
pend on the the orientation of the keyframe, as inspection of the se(3) tangents reveals:
RT

0 (t1 − t0) [For14].

Figure 4.6: The curve for slerpCGI in orange and slerpSE(3) in violet. Intermediate orientations
at equally sampled intervals for both curves are denoted with camera frustums in the
same color. Note that the intermediate orientations of the curves are equal, small visual
differences are a result of the perspective projection used. The keyframe orientations are
black.

Trajectory from multiple keyframes with higher order continuity

The above pairwise interpolation schemes can be applied iteratively to gain curves with
higher order continuity. In particular, we will focus on the cumulative cubic B-spline, since
it provides C2 continuity and local control.

Trajectory from SO(3) and R3 The cumulative cubic B-spline orientation curve (4.4) q(τ)
construction scheme of [KKS95] can be easily applied to the Euclidean space of translation
vectors:

vi = ti − ti−1

t(τ) = t0 + Ñ1v1 + Ñ2v2 + Ñ3v3 (4.6)
translation curve

Thus, through iterated application of slerpCGI , we get the independent curves (q(τ), t(τ)).

Trajectory from SE(3) Using the same cumulative cubic B-spline but the other parame-
terization T ∈ SE(3), as used in Spline Fusion [LPPS13, PPLS15] (section 3.4), we get the
joint curve T(τ). The iterated application of slerpSE(3) leads to a translation curve whose
shape is hard to control (fig. 4.7). It is neither bounded by its control polygon, nor does it
pass through any control points, even when using phantom points.

47

4 Approach

(a) The orientation of the intermediate keyframe is set to
the identity θ = 0 ⇒ q0.5 = [1, 0, 0, 0], which is
exactly halfway between the other two.

(b) The orientation of the intermediate keyframe is set to
that of the first keyframe q0.5 = q0. Note that in this
case, slerpCGI = slerpSE(3) for i ∈ [0, 0.5].

Figure 4.7: Trajectory from three keyframes. The piecewise interpolation of slerpCGI is drawn in
orange and slerpSE(3) in violet, the cubic cumulative B-spline trajectory from SO(3) and
R3 in green and from SE(3) in cyan. The keyframes are black. Added a new keyframe
at i = 0.5 with t0.5 = [0, 2, 0] in between the keyframes from the previous example.
Phantom points at the beginning and end are added in the direction of the dashed green
line so that the first and last control point are interpolated.

4.2.5 Summary

The joint curve T(τ) might be torque-minimal, but the coupling of orientation and transla-
tion is certainly undesired when we need to optimize over trajectories. Thus, we decided
to drop this representation.

Instead we chose a trajectory representation that separately interpolates orientation curve
(4.4) and translation curve (4.6) to define the combined curve (q(τ), t(τ)). This representa-
tion fulfills all the properties we wished for at the beginning of this section:

• Local control: an update of the trajectory estimate only affects the trajectory between
the neighboring four base poses.

• C2 continuity of both position and orientation: through the use of cumulative cubic B-
splines for both.

• Orientation parameterization without singularities: through the use of unit quaternions.

• As few parameters as possible: through the use of unit quaternions and a medium knot
spacing.

• Analytic derivatives with efficient formulas: The computation of derivatives on B-splines
and quaternions is actually not hard (section 4.4.2).

48

4.3 Algorithm Overview

4.3 Algorithm Overview

This section gives an overview of the algorithm at the core of our approach. We explain
each line of the pseudo-code and give references to further details.

Algorithm 1: CONTINUOUS TIME TRAJECTORY ESTIMATION FOR 3D SLAM FROM AN

ACTUATED 2D LASER SCANNER
Input: Lτk 2D laser scans at discrete times τk

Mτk IMU measurements at discrete times τk
Output: T (τ) continuous time trajectory
Params: ∆τSweep

1 T ← initializeTrajectoryFromIMU(M)
2 for i← 1, τcurr ← minτ (L) to maxτ (L); i← i+ 1, τcurr ← τcurr + ∆τSweep do
3 Si ← unprojectAndAccumulate([Lτcurr , . . . ,Lτcurr+∆τSweep

])
4 Si ← undistortAndComputeSurfels(Si, T)
5 if i > 1 then
6 imuMatches← imuDeviations(T, [Mτcurr−∆τSweep

, . . . ,Mτcurr+∆τSweep
])

7 for j ← 1 to nicpIter do
8 surfelMatches← matchSurfels(Si(T), Si−1(T))
9 T ← NLS(T, surfelMatches, imuMatches)

10 Si ← updateSurfelWorldPosition(Si, T)

11 return T (τ)

The input to our algorithm are 2D laser scans and IMU measurements. It operates by
advancing a time-window (line 2) by half of its length, the sweep duration ∆τSweep. For
each pair of sweeps (line 5) the two basic ICP steps are repeated until convergence (line 7):
I compute correspondences (line 8) and
II apply the transformation (line 10) to minimize the error of these matches.

The trajectory is initialized (line 1) using IMU measurements (section 4.4.1). The 2D
laser scans are converted to Cartesian coordinates and accumulated (line 3) into a sweep
(section 4.5.1). With the current trajectory estimate we can (line 4) undistort all scans in a
sweep, assign true world coordinates and compute surfels (section 4.5.2) by discretizing
space into a voxel grid.

Trajectory regularization constraints (line 6) are computed once for the current time win-
dow (section 4.4.3). For a pair of sweeps, we subsequently solve multiple NLS problems
(line 9) in an ICP fashion. Multiple observations of the same landmark are denoted as sur-
fel matches (line 8) and need to be recomputed after each ICP iteration (section 4.5.3).

Using the sliding time-window approach of above algorithm for each pair of consecutive
sweeps we get an open-loop trajectory estimate (section 4.6.1). With minor modifications,
the same algorithm is employed subsequently to globally register all sweeps at once to
further reduce the accumulated drift (section 4.6.2).

49

4 Approach

4.4 Using IMU measurements

To get an initial estimate of the trajectory, we integrate IMU measurements (section 4.4.1)
using inertial navigation techniques. Furthermore, we want to incorporate IMU measure-
ments constraints in our optimization problem to act as a regularizer for the surfel matches
(section 4.5.3). To do so, we must first derive analytical expressions (section 4.4.2) for the
angular velocity and linear acceleration of our trajectory representation. Then we may
state the residual terms, taking care of the noise model of the measured data (section 4.4.3).

4.4.1 Trajectory initialization via inertial navigation

Figure 4.8: Strapdown inertial navigation algorithm [Woo07, Fig 4]

Inertia is the property of a rigid body to maintain constant linear and angular velocity,
unless disturbed by forces or torques, respectively. This is valid in an inertial reference frame
where Newton’s laws of motion hold. When ignoring the negligible effects due to the
earth’s rotation, the world frame w can be seen as such. For the time derivative of a rigid
body motion g = (R, t) or g = (q, t), it holds that [FCDS15, KKS95]:

Ṙ = R[ω]× or q̇ = q
1

2
ω , ṫ = v and ẗ = v̇ = a

When knowing ω(τ) and a(τ) as well as the initial velocity and position, we can recover
the rigid body motion g, consisting of position t(τ) and orientation R(τ) or q(τ) via simple
numerical integration [FCDS15]:

q(τ + ∆τ) = q(τ) exp(ω(τ)∆τ)

wv(τ + ∆τ) = wv(τ) + wa(τ)∆τ

wt(τ + ∆τ) = wt(τ) + wv(τ)∆τ +
1

2
wa(τ)∆τ2

Inertial navigation tries to track the position and orientation of an object by processing
and integrating noisy IMU measurements angular velocity (2.14) ω̃ and linear acceleration
(2.15) ã, sampled at a specific frequency ∆τ , instead of the unavailable true functions ω
and a. In strapdown inertial navigation, ã is not measured in the frame w, but in s, which
makes things more complicated. Furthermore, a(τ) and ω(τ) most likely don’t remain

50

4.4 Using IMU measurements

constant in [τ, τ + ∆τ], which additionally introduces integration errors. For ω̃, there is
nothing we can do, but for ã, we can do slightly better using the midpoint rule:

wa(τ +
1

2
∆τ) =

1

2
(q(τ)sa(τ) + q(τ + ∆τ)sa(τ + ∆τ))

wv(τ + ∆τ) = q(τ)sv(τ) + wa(τ +
1

2
∆τ)∆τ

sv(τ + ∆τ) = q̄(τ + ∆τ)wv(τ + ∆τ)

wt(τ + ∆τ) = st(τ) + wv(τ + ∆τ)∆τ

Due to the double integration of acceleration and its dependency on accurate orienta-
tion, translation errors are usually much larger than orientation errors. Rotation rates only
need to be integrated once and are independent of acceleration. The non-zero centered
bias introduces an additional drift in pose estimation, which makes estimation of a long
trajectory (even 1s is already long) unfeasible if only IMU data is used.

Because of these shortcomings we only use inertial navigation as a first guess for trajec-
tory initialization, which is later on refined in combination with other techniques. How-
ever, over short time-spans and because of its high sensor rate, IMU data provide useful
time-local constraints which can be used for trajectory regularization as seen in the next
section.

4.4.2 Synthesized inertial measurements

We decided to use the cumulative cubic B-spline approach of [KKS95] (section 4.2.2) for
the orientation curve (4.4) q(τ). The same construction scheme was also applied for the
translation curve (4.6) t(τ) so that we can use the same cubic cumulative basis matrix Ñ(τ).
For simplification of notation, we omit the time variable (τ) from the basis matrix and just
write Ñ. Furthermore, we index the control points or quaternions of the current segment
with 0, 1, 2, 3 instead of i− 1, i, i+ 1, i+ 2.

The derivative of a B-spline curve with respect to time is easily computed. The only
thing that depends on time is our local parameter u, which appears in polynomial form
up to degree 3. Thus we can split the basis matrix Ñ into a row vector of polynomial
coefficients and a constant matrix C. The derivatives of a B-spline just need to use the

derivatives of the B-spline basis matrix ˙̃
N and ¨̃

N and furthermore just follow the chain

rule. Note that Ñ0 = 1,
˙̃
N0 = 0,

¨̃
N0 = 0:

Ñ =
[
u3 u2 u 1

]
C

˙̃
N =

1

∆τ

[
3u2 2u 1 0

]
C

¨̃
N =

1

∆τ2

[
6u 2 0 0

]
C

C =
1

6


0 1 −2 1
0 −3 3 0
0 3 3 0
6 5 1 0



Because the orientation curve q(τ) is given as a (quaternion) product with 3 non-constant
factors xi = exp(Ñiωi) its first time derivative q̇(τ) looks a little lengthy. However, it is

51

4 Approach

just given by iterated application of product rule (x1x2x3)′ = x′1x2x3+x1x
′
2x3+x1x2x

′
3 and

chain rule for each summand x′i = (ui(vi))
′ = u′i(vi)v

′
i. With ui = exp(vi) and vi = Ñiωi

we get x′i = exp(Ñiωi)
′ = exp(Ñiωi)(

˙̃
Niωi). The anchor control point q0 is just a constant

factor, since it does not depend on time.

ωi = log(q̄i−1qi)

q(τ) = q0 exp(Ñ1ω1) exp(Ñ2ω2) exp(Ñ3ω3)

q̇(τ) = q0 exp(Ñ1ω1)(
˙̃
N1ω1) exp(Ñ2ω2) exp(Ñ3ω3)

+ q0 exp(Ñ1ω1) exp(Ñ2ω2)(
˙̃
N2ω2) exp(Ñ3ω3)

+ q0 exp(Ñ1ω1) exp(Ñ2ω2) exp(Ñ3ω3)(
˙̃
N3ω3)

sω(τ) = 2(q̄(τ)q̇(τ)).vec()

The correct formula for the angular velocity curve ω(τ) = 2(q̄(τ)q̇(τ)).vec() is not triv-
ially derived. It did not appear in any previous work that we know of and thus deserves
an in-depth explanation. q̇(τ) is given in the world frame w. By multiplication with the
inverse q̄(τ) of the orientation curve q(τ), we transform it into the sensor frame s. The
stunning fact is that sq̇(τ) = q̄(τ)wq̇(τ), the product of two unit quaternions from the Lie
group SU(2), becomes a pure quaternion (with s ˙qw(τ) = 0) in the Lie algebra su(2)! This
is due to the fact that in the sensor frame s, the pure quaternion can be seen as a repre-
sentative of the tangent space at the identity. We can identify the vector part sq̇x:z(τ) of
this pure quaternion with an angular velocity vector ∈ R3. The multiplication by two may
be needed since the curve’s velocity is measured in S3, but the angular velocity in SO(3).
This depends however how one defines quaternion exp (2.5). Fortunately we only need
the first derivative of the orientation curve to get synthetic analytic angular velocity mea-
surements ω for an arbitrary time τ . To synthesize linear acceleration measurements, we
need to derive the translation curve (4.6) t(τ) twice. However it is much easier to derive
because it is just a sum so each summand can be derived independently. Each summand
is furthermore just a product where vi is a constant factor, so there is no need for the chain
rule either. This makes computing the second derivative trivial:

vi = ti − ti−1

wt(τ) = t0 + Ñ1v1 + Ñ2v2 + Ñ3v3

sv(τ) = q̄(τ)
(˙̃
N1v1 +

˙̃
N2v2 +

˙̃
N3v3

)
= sṫ(τ)

sa(τ) = q̄(τ)
(¨̃
N1v1 +

¨̃
N2v2 +

¨̃
N3v3

)
= sv̇(τ)

Note that this formula is much easier than the matrix-based formulas presented in Spline
Fusion [LPPS13, PPLS15]. This is due to the fact that our position and orientation curve are
independent of each other. Easier formulas mean more efficient optimization when using
Ceres automatic derivatives on the residuals.

52

4.4 Using IMU measurements

4.4.3 Trajectory regularization constraints

The measured angular velocities (2.14) and linear accelerations (2.15) follow the following
noise model as explained before:

sω̃(τ) = sω(τ) + sbω(τ) +N (0, σω)

sã(τ) = sa(τ) + q̄(τ)wg + sba(τ) +N (0, σa)

The residual between a synthesized and a real IMU measurement, consisting of gyro-
scope and accelerometer readings at time τk may be written as:

seω = sω̃(τk)− sω(τk)− sbω(τk) (4.7)
angular velocity residual

sea = sã(τk)− q̄(τk)wg − sa(τk)− sba(τk) (4.8)
acceleration residual

Note that in contrast to (3.8), we state the acceleration residual (4.8) in the sensor frame
instead of the world frame. This allows to directly substract the synthesized acceleration
measurement sa from the previous section as well as the bias ssb. Only the gravity has to
be rotated first. Due to the zero-centered white noise on the measurements, the residuals
should be weighted by their respective information matrices Σ−1, obtained from device
specifications or calibration. These allow weighing the expected variance of each dimen-
sion against each other. The bias functions are modeled as as cumulative cubic B-spline
and share the same knots as our control points. To keep them constrained, we furthermore
add a term for each measurement time forcing the bias’ derivative to zero:

esbω = ˙
sbω(τk) , esba = ˙

sba(τk) (4.9)
bias regularizer residual

The derivative of the B-spline curve ˙
sb(τ) can be computed in analogy to the first deriva-

tive of our position curve, the velocity curve ṫ(τ) = v(τ). The bias control points are
initialized with a zero vector.

In contrast to the bias, the gravity wg vector is a constant and measured in the world
frame. It is initialized by taking the mean of acceleration measurements while leaving the
device fixed and level with the floor plane for a few seconds. Normally, the world frame
used in IMU’s is the North East Down frame, with the gravity vector pointing towards
negative z. In an ideal world the mean of acceleration measurements when leaving the
device fixed should be [0, 0, 9.81]. Due to magnetic interference, inexact orientation mea-
surements or internal calibration errors of the 3 accelerometer’s axis, even when the device
stays fixed, parts of the gravity’s z component will be projected onto the other axes. Thus,
it could make sense to model the gravity not as a constant, but as a slowly time-varying
function in the world frame, similar to the bias. However, we leave this for future work.

Alternatively, some devices allow to compensate for gravity directly on the device. In
that case we can drop the term q̄(τk)wg above.

53

4 Approach

4.5 Using LiDAR measurements

Our algorithm does not use the 2D LiDAR measurements directly, but accumulates them
into a sweep first (section 4.5.1). It then computes local surface features, surfels on this 3D
representation (section 4.5.2) which are used as landmarks. Multiple observations of the
same landmark, named surfel matches are used as constraints in optimization (section 4.5.3).

4.5.1 Accumulating 2D laser scans into a 3D sweep

(a) 2D laser rotating around the yaw
or z-axis generates measurements
in the x-y-plane. It has a field of
view of 270 degrees and a range
of about 20 m (fig. 2.2b).

(b) Rotation around the roll or x-
axis allows to cover the environ-
ment visible to the sensor in every
half rotation due to the symme-
try along the x-axis. Points to the
front are most densely sampled.

(c) Nodding along the pitch or y-
axis is also sometimes encoun-
tered. However, it needs twice as
long as rolling motion to cover the
whole environment. Points to the
front are least densely sampled.

Figure 4.9: 2D laser scan plane and possible actuation [WW03] to get a 3D scan.

A 2D laser scanner rotates its mirror around the z-axis (fig. 4.9a) to get measurements
in the x-y-plane in polar coordinates. These are converted to Cartesian coordinates using
lidar backprojection (2.13). To get 3D measurements from a 2D sensor, we have to actuate
it to cover the remaining dimension and then fuse multiple scans.

For the actuation, there are two possibilities. We made use of symmetry along the x-
axis by rotating the 2D laser scanner around it (fig. 4.9b). This allows to cover the whole
space visible to the scanner in half the timespan than when rotating or nodding around
the y-axis (fig. 4.9c) with the same frequency. To fuse multiple scans we have to take into
account the motion of the scanner, otherwise the accumulated scans will have distortion
artefacts due to the intra- and inter-scan motion. Thus, we need the trajectory of the laser
scanner during the acquisition of a scan, an initial estimate of which is obtained via inertial
navigation (section 4.4.1).

We can account for intra and inter scan distortion in a unified manner if we treat each
single laser beam individually. We know the acquisition time τk of each laser beam and
can query our trajectory estimate T for the current transformation between sensor and
world frame. W.l.o.g lets assume that the laser scanner origin coincides with the IMU
sensor frame s. When seen in this varying frame, the simple projection from polar to
Cartesian coordinates is actually distortion free and results in a point sp = [x, y, 0] having
a z component of zero. To get the correct coordinates of each laser beam in the world
frame, we just have to apply: wp = T (τk)sp

54

4.5 Using LiDAR measurements

Depending on the frequency of the actuation and of the laser scanner mirror rotation we
gather a certain number of 2D laser scans into a 3D sweep. E.g. if actuated with 0.5Hz,
one half rotation lasts 1s. If the laser scanner rotates with 40Hz, we get 40 laser scans per
sweep.

4.5.2 Generating surfels

Once all the scans of a sweep are projected into the world frame, we can compute surfels.
This is done by discretizing the space covered by a sweep into a 3D voxel-grid. If enough
points fall inside a voxel, the PCA of all the points inside this voxel is computed. This fits a
Gaussian distribution to the point set inside a voxel and summarizes it using the centroid
(2.21) and the covariance matrix (2.22), whose eigen decomposition (2.23) is also computed
to gain simple surface statistics. Based on the sorted eigenvalues λ0 ≤ λ1 ≤ λ2, we are
computing the plane likeness ∈ [0, 1] to measure to judge the local shape inside the voxel
as follows [BZ09]:

P ({pi} describes plane) = 2
λ1 − λ0

λ0 + λ1 + λ2
(4.10)

plane-likeness

The advantage of this measure compared to curvature (2.24) is that it gives special atten-
tion to the second smallest eigenvalue λ1 and not only to the smallest eigenvalue λ0 as the
curvature does. It gives a value of 1, indicating a planar region, only if the smallest eigen-
value is significantly smaller then the other two. The curvature, on the other hand, cannot
distinguish between planar and cylindrical features, where the second smallest eigenvalue
is about the same size as the smallest eigenvalue. These cylindrical features can appear in
point cloud acquisition with LiDAR when a voxel is traversed by the scan-line only once.
Cylindrical features cannot be used to compute a reliable 3D normal, since the normal can
rotate around the line as long as it stays perpendicular to it. The curvature measure was
originally created for dense point clouds acquired by range cameras, where these cylindri-
cal features did not appear.

However, if the plane-likeness (4.10) is high enough, we can compute the surface normal
(2.25) ~n and generate a surfel. All the surfels of a sweep are now put into a 6D kd-tree for
fast nearest neighbor queries, where the 6D vector [µ, ~n]T is the concatenation of centroid
and normal vector.

4.5.3 Surfel match constraints

Multiple observations of the same landmark (fig. 4.10b) in consecutive sweeps are ap-
proximated by nearest neighbor surfel matches in the 6D Euclidean space of concatenated
centroid and normal vectors. Only reciprocal matches are kept to keep the match error
between two sweeps symmetric. Matches whose distance between their centroids or an-
gle between surface normals is above a predefined threshold are also discarded. This al-
lows to get rid of wrong initial correspondences during later ICP iterations. However, the
thresholds should not be set too low initially, since it is possible that one then discards all
correspondences and gets stuck in a local minima. An adaptive threshold that is initially

55

4 Approach

(a) Graph of a 1D cubic B-spline. The bumps are the basis functions,
the knots are the dashed lines, while the control vertices are the
black dots. The curve is only defined inside the shaded area,
where 4 basis functions are nonzero. Note that 2 phantom con-
trol points outside this area are needed to define the curve. The
shape of the curve in the dark gray area is influenced only by the
highlighted basis functions. [SFSF15]

Control point
Pose at time τ

T(τ)

T(τ)

1 2

3

4

5

6

ai

bi

(b) A surfel match is a pair of landmark observa-
tions at different times along the trajectory. The
pose of surfel ai at time τai is parameterized by
control poses 1-4 and the pose of surfel bi by
control poses 3-6. Due to the overlap of two,
this surfel match {ai → bi} constrains 6 control
poses. [PPLS15]

Figure 4.10: Surfel matches and the resulting constraints on the trajectory representation.

set high to allow for a larger basin of convergence and then reduced at each iteration to
allow for a high accuracy final solution is thus preferable.

By stating GICP’s plane to plane (3.6) relative pose error:

E =
N∑
i=1

d(pi,p
′
i)
T (RΣ̂piR

T + Σ̂p′i
)−1d(pi,p

′
i) , d(pi,p

′
i) = Rpi + t− p′i

as an absolute pose error (3.3) like in the derivation of MV-LM-ICP:

E(gh, gk) =

Nh∑
i=1

∥∥Rhpi + th − (Rkp
′
i + tk)

∥∥2

And replacing N point correspondences {pi → p′i}N1 (section 3.1) with one surfel match
ai → bi, where each surfel is a tuple of centroid, normal, and covariance matrix with disc
shape prior, (µ, ~n, Σ̂), we get an expression for the residual:

d̄(ai, bi) = Raiµai + tai − (Rbiµbi + tbi)

eai,bi = d̄(ai, bi)
T (RhΣ̂aiR

T
h + RkΣ̂biR

T
k)−1d̄(ai, bi) (4.11)

surfel match residual

This is the plane to plane error using absolute poses adapted for use with surfels, whose
vector- or matrix-valued quantities (µ, ~n, Σ̂) are expressed in the sensor frame s. The error
above however is expressed in the world frame w, by first rotating and translating the
centroid and rotating the covariance matrices using the rigid body motions (qai , tai) =
T (τai), (qbi , tbi) = T (τbi) acquired by evaluating the trajectory T (τ) at the surfel’s mean
timestamp.

A surfel match constrains the trajectory at two instants in time. Due to the parametriza-
tion with cubic Bezier splines (fig. 4.10a), between 4 and 8 distinctive base poses are af-
fected by this match. This is the case because the influence of the basis functions at the two
specific times may overlap.

56

4.6 Model optimization

4.6 Model optimization

The overall objective function to be minimized is the sum of squared norms of all our
residuals:

E = (1− α)
N∑
i=0

eai,bi + α
M∑
j=1

(
eTωj

Σ−1
ω eωj + eTaj

Σ−1
a eaj + eT

sbω
esbω + eT

sba
esba

)
We have N surfel matches, each contributing a surfel match residual (4.11). Note that
in the way we defined this residual, it is already a scalar, a squared norm weighted by an
information matrix, the surface shape prior. Each of theM IMU measurements contributes
an angular velocity residual (4.7) and an acceleration residual (4.8) together with a bias
regularizer residual (4.9) for each of them. These are vector valued quantities ∈ R3 and
thus their norm needs to be taken. The measurements are furthermore weighted by their
information matrices.

We introduce the scalar α ∈ [0, 1], which allows to weigh the contributions of these two
error terms against each other. It acts as a regularization parameter controlling the weight
of the data term arising from surfel matches vs. the regularization term consisting of IMU
constraints. Setting α to zero has the effect of tearing trajectories apart, since unbounded
accelerations are no longer punished. Setting it to one allows the above algorithm to work
as a sophisticated inertial navigation algorithm which uses splines for integration.

We solve the objective function via Non-linear Least Squares (NLS). It is quite general,
and can thus be employed in two operation modes, which only differ by the way the
residual terms are added. We can either process the trajectory in small subsets, which
we coin time-windowed optimization (section 4.6.1) or in batch, that we refer to as global
optimization (section 4.6.2).

(a) The active state during the time-windowed optimization. Uni-
form cubic B-spline basis functions that influence the active
time segments are part of the active state. A surfel match, de-
noted with a star, becomes active if at least one of the surfels is
from within the active state.

Ground
Truth

Estimated
Pose

Active Region

1,0

2,1

3,2

4,3

5,4

6,5

(b) In the case of time-windowed optimization, the ac-
tive state usually spans a few of the most recent base
poses. Note that drift accumulates due to the frame-
to-frame estimation.

Figure 4.11: Time-windowed or open loop trajectory estimation works by optimizing a small subset
of the trajectory at a time and advancing the window as new data arrives [AMB15].

57

4 Approach

4.6.1 Time-windowed optimization

Our algorithm is applied for open-loop trajectory estimation in a time-windowed fashion.
In the first iteration, the active state comprises of all the base poses of the first two sweeps.
Then we iterate by advancing the current time window by a fraction of its length, usually
the duration of one sweep. Now only the base poses of the latest sweep are optimized, the
others are static (fig. 4.11a). This ensures that the error of an already processed segment
does not increase again. However, this frame-to-frame or sweep-to-sweep approach is
inherent to accumulate drift (fig. 4.11b).

4.6.2 Global optimization

1,0

2,1

3,2

4,3

5,4

6,5

6,0

Loop
Closure

(a) In the case of loop closure, the active state consists
of surfels and base poses from both ends of the tra-
jectory. Drift between the ends can be corrected for.

1,0

2,1

3,2

5,4

6,5

6,0

Root

(b) When closing the loop, the remaining error is evenly
distributed along the rest of the trajectory through
global optimization.

Figure 4.12: Loop closures and global optimization improve the final accuracy [AMB15].

After all data is processed, we have an open-loop trajectory estimate in which drift from
discretization errors is accumulated. To reduce the drift, we apply a subsequent global
optimization step, optimizing over all sweeps at once. If the open-loop trajectory estimate
is good enough, loop closures will automatically be added (fig. 4.12a) due to the ICP-style
nature of this algorithm. This distributes the remaining error evenly over the rest of the
trajectory, which is not constrained by loop closures (fig. 4.12b).

The optimization problem we now have to solve is to reduce the overall alignment error
between all pairs of sweeps. This is an extension of the multiview error (3.4) error to con-
tinuous time and deformable registration. The registration becomes deformable, because
we do not try to match rigid sweeps with each other, but match the surfels contained in
each sweep against each other. These can move independently of each other which allows
the sweep to deform during optimization. The extension to continuous time means that
instead of estimating one absolute pose for a sweep, we estimate the trajectory during a
sweep, represented as a weighted sum of a number of basis functions.

Note that the graph adjacency matrix of this continuous time deformable multiview
error has a block structure of N ×N for N sweeps. Because of the symmetric surfel match
error, we can save half the complexity and pick only the lower or upper diagonal part.

58

5 Evaluation

We evaluate our approach on synthetic data acquired with a specifically extended simu-
lator that can simulate actuated 2D lidar scans and inertial measurements. The available
ground truth allows to state the performance in different scenarios. In the following, we
encode the different trajectory estimates or stages as follows:

G I W F
ground truth initialization windowed optimization final global optimization

5.1 Evaluation metrics

The difference between ground truth and estimated trajectory can be expressed using spe-
cific metrics developed for evaluation purposes [SEE+12]. Since these come from discrete-
time approaches, we need to sample ground truth and estimated trajectory at correspond-
ing times. Thus Q = {Q1, · · · , Qn} ∈ SE(3) ground truth poses need to be compared to
P = {P1, · · · , Pn} ∈ SE(3) pose estimates. The evaluation metrics are defined on corre-
sponding pairs of poses and then summarized in a single number using a specific statistic.

The Relative Pose Error (RPE) at time step i with interval width 1 measures relative
pose differences of consecutive poses. It thus describes the local accuracy of the trajectory,
useful for evaluating drift.

Ei := (Q−1
i Qi+1)−1(P−1

i Pi+1)−1 (5.1)
RPE

The Absolute Trajectory Error (ATE) at time step i measures absolute pose differences.1

It thus describes the global consistency of the estimated trajectory, which is especially
relevant after loop closures and global optimization.

Fi := Q−1
i SPi (5.2)

ATE

Root Mean Squared (RMS) is a statistic to describe a set of scalar values compactly.
Scalars are obtained by computing the norm of the translational components ti of above
metrics, because it encodes the rotational component [SEE+12]. Then they are summarized

as
√

1
n

∑n
i=1 ‖ti‖

2 to get a single number for the whole trajectory. In the following, we
always mean their RMS when talking about the above evaluation metrics.
1 Because both trajectories can live in different coordinate systems, we need the rigid body motion S that

aligns them in a least-squares sense. It is obtained by registering all the translational parts of Q to the
ones of P using [AHB87], which is the usual registration method of point to point (3.1) ICP.

59

5 Evaluation

5.2 Scenarios

5.2.1 Scenario box

The first scenario (fig. 5.1) is a half-circular motion inside a box where the orientation
changes continuously, aimed at testing our trajectory representation.

−1 −0.5 0 0.5 1
−1

0

1

posX
po

sY

Figure 5.1: box A half-circular trajectory inside a box. The trajectory is drawn in green, on the right
side there is a top down view of it. A simulated LiDAR scan is shown in magenta.

Figure 5.2: Left: The small circles are the covariance ellipses of the surfels, belonging to four differ-
ent sweeps according to their color. Right: A top down view of estimated trajectories.

stage ate rpe

I [mm] 9.1 0.19
↓ [%] 38 41

W [mm] 5.62 0.11
↓ [%] 68 54

F [mm] 1.79 4.97 · 10−2

sweep 0 1 2 3

0 0 45 32 34
1 0 0 34 38
2 0 0 0 42
3 0 0 0 0

Table 5.1: Left: Evaluation metrics and their relative decrease during the different stages of the
algorithm. Right: The initial adjacency matrix used in the final global optimization. Each
entry depicts the number of surfel matches between the two sweeps.

This scenario consists of four sweeps (fig. 5.2). Our trajectory representation can closely
follow even slight angular velocity changes during the circular motion, which allows to

60

5.2 Scenarios

0 1 2 3 4

3.14

3.16

3.18

3.2

3.22

3.24

3.26

time τ

an
gV

el

G
I

W
F

0 1 2 3 4

−2

−1

0

1

·10−2

time τ

po
sZ

Figure 5.3: Left: Even with very noisy angular velocity measurements seen in the initial trajectory,
the final trajectory follows the ground truth closely. Right: The z drift of the trajectory
is minimized after each stage.

minimize the drift (fig. 5.3). The evaluation metrics decrease in each stage, which shows
that the algorithm works as expected. The percentual decrease of the metrics during global
optimization is significantly higher than between the first two stages (table 5.1). This is due
to the fact that the graph adjacency matrix is fully connected, with about the equal amount
of surfel matches in between the sweeps. These surfel matches allow to compensate very
noisy angular velocity measurements.

5.2.2 Scenario loop

The second scenario (fig. 5.4) starts and ends in the same point, testing the ability to find
loop closures. The scene has the topology of a donut or box with a whole in the middle,
limiting the visibility of equal geometry during consecutive sweeps.

0 1 2 3 4 5 6

0

2

4

6

posX

po
sY

Figure 5.4: loop A trajectory that ends in its starting point. A top down view is shown as well. The
scene is a box with a whole in the middle.

This scenario consists of 12 sweeps and the trajectory ends in the same position as it
starts, only the orientations of start and end are 90 degrees apart (fig. 5.5). The algorithm
is able to overcome large z drift by closing the loop (fig. 5.6). The adjacency matrix of
the graph used in global optimization (table 5.2) is approximately band-diagonal, mean-
ing that four consecutive sweeps can be matched against each other due to the visibility

61

5 Evaluation

Figure 5.5: Left: The small circles are the covariance ellipses of the surfels, belonging to 12 different
sweeps according to their color. The initial trajectory is off upwards. Right: The effect
of the loop closure is shown in detail. The final (red) trajectory nearly ends at the start
position again.

0 2 4 6 8 10 12

1.4

1.6

1.8

2

time τ

lin
Ve

l

G
I

W
F

0 2 4 6 8 10 12

2

2.5

3

3.5

time τ

po
sZ

Figure 5.6: Left: The initial trajectory overestimates the true linear velocity, especially in z direction.
Right: This causes the huge drift in the initial trajectory estimate. The open-loop solu-
tion is also affected. But after loop closure and global optimization, the z drift at the end
is corrected.

stage ate rpe

I [mm] 327.06 1.57
↓ [%] 86 88

W [mm] 43.98 0.17
↓ [%] 87 53

F [mm] 5.42 8.05 · 10−2

sweep 0 1 2 3 4 5 6 7 8 9 10 11

0 0 38 13 10 2 0 0 0 6 8 11 41
1 0 0 32 17 4 1 0 0 0 2 5 32
2 0 0 0 30 16 7 2 1 2 0 0 14
3 0 0 0 0 41 22 10 4 2 0 0 9
4 0 0 0 0 0 40 14 7 2 0 0 1
5 0 0 0 0 0 0 31 23 8 6 0 2
6 0 0 0 0 0 0 0 41 23 10 2 1
7 0 0 0 0 0 0 0 0 31 14 3 1
8 0 0 0 0 0 0 0 0 0 34 20 9
9 0 0 0 0 0 0 0 0 0 0 42 18
10 0 0 0 0 0 0 0 0 0 0 0 27
11 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.2: Left: Evaluation metrics and their relative decrease during the different stages of the
algorithm. Right: The initial adjacency matrix used in the final global optimization. Each
entry depicts the number of surfel matches between the two sweeps.

constraints when turning around the 3 corners. Additionally, the loop-closure is visible in
the upper right part of the matrix: the first three sweeps can be matched to the last three
sweeps. The decrease of the evaluation metrics between the stages is nearly same for ATE
(86% and 87%), but for RPE, it is smaller for global optimization (53%) than before (88%).

62

5.2 Scenarios

This is due to the fact that this large loop closure improves global consistency, but does not
in the same manner reduce the drift, especially in the middle part of the trajectory.

5.2.3 Scenario stairs

The last scenario (fig. 5.7) contains fine-scale geometry features like stairs and vertical
notches in the walls, testing the algorithm’s 3D scene representation. The trajectory is
the only one with a varying z coordinate, testing the ability to perform full 3D SLAM.

0 2 4 6 8 10 12

0

1

2

time τ

po
sZ

Figure 5.7: stairs A trajectory where y is 0, x grows linearly and z is plotted above. The scene
contains fine-scale geometry features.

Figure 5.8: Left: Side view of the scenario. Right: Detail looking towards positive x. Note the y
drift of the initial trajectory and that there are no surfels on the stairs.

The stairs scenario is the only one where the z coordinate is modified and which has
fine-scale geometry features (fig. 5.8). No surfels are generated on the steps because the
chosen voxel size is bigger than the steps. Thus, the threshold on the plane-likeness (4.10)
discarded these unreliable surfels. Nevertheless, the algorithm still performs well and
can minimize the drift in z direction (fig. 5.9). The adjacency matrix (table 5.3) is quite
dense. About six consecutive frames have more than 10 surfel matches. This acts like fixed
view or keyframe optimization, reducing the accumulated drift from the frame-to-frame
time-windowed optimization. The relative decrease of the evaluation metrics (87%, 88%)
and (83%, 44%) is very similar to the values of the previous loop closure scenario. This
highlights the fact that our algorithm handles loop closure and keyframe optimization
naturally in a very similar manner.

63

5 Evaluation

0 2 4 6 8 10 12

−0.15

−0.1

−5·
10−2

0

time τ

po
sY

G
I

W
F

0 2 4 6 8 10 12

0

1

2

time τ

po
sZ

Figure 5.9: Left: Windowed and final trajectory estimate have about the same absolute drift in y
direction. Right: Final trajectory nearly coincides with the solution in z direction.

stage ate rpe

I [mm] 229.04 0.75
↓ [%] 87 83

W [mm] 28.42 0.13
↓ [%] 88 44

F [mm] 3.38 7.05 · 10−2

sweep 0 1 2 3 4 5 6 7 8 9 10 11

0 0 54 23 38 37 27 20 11 8 6 6 5
1 0 0 25 35 41 38 31 17 12 10 8 8
2 0 0 0 17 18 16 13 9 6 3 2 2
3 0 0 0 0 52 49 37 31 25 17 17 17
4 0 0 0 0 0 98 83 68 57 39 28 27
5 0 0 0 0 0 0 109 98 78 51 44 36
6 0 0 0 0 0 0 0 99 88 59 48 44
7 0 0 0 0 0 0 0 0 91 60 53 46
8 0 0 0 0 0 0 0 0 0 59 53 49
9 0 0 0 0 0 0 0 0 0 0 44 46
10 0 0 0 0 0 0 0 0 0 0 0 54
11 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.3: The error and their relative decrease during the different stages of the algorithm. The
initial adjacency matrix for global optimization. Each number depicts the number of
surfel matches between the two sweeps.

5.3 Effect of noise

0 0.5 1 1.5 2 2.5 3

·10−2

0.2

0.4

0.6

0.8

1

1.2

1.4
·10−2

sigmaIMU

at
e

box

W
F

0 0.5 1 1.5 2 2.5 3

·10−2

0.5

1

1.5

2
·10−2

sigmaLidar

at
e

box

Figure 5.10: Effect of noise on IMU (left) and LiDAR measurements (right) on the absolute trajec-
tory error for the box dataset. The different lines depict the trajectory estimates of the
different stages of the algorithm.

Here we evaluate the effect of noise on our sensor measurements and its impact on
accuracy. The noise model used for the IMU is white noise on angular velocity and linear

64

5.4 Effect of different parameters

acceleration vector. Additionally, we add a constant bias with a value of the standard
deviation of the white noise. The LiDAR data has white range noise along the laser beam.
As expected, the accuracy improves when lowering the noise level (fig. 5.10). This general
trend is clearly visible regardless of the sensor.

5.4 Effect of different parameters

Certain parameters of our algorithm affect the overall performance. First of all the number
of ICP iterations (iter), the knot spacing of our B-spline (taus) and the size of our voxels
(voxelSize) used for space discretization.

5.4.1 Number of ICP iterations (iter)

1 2 3 4 5

1

2

3

4

·10−2

iter

at
e

W

box
loop
stairs

1 2 3 4 5

0.2

0.4

0.6

0.8

1

·10−2

iter

at
e

F

Figure 5.11: Effect of increasing the number of iterations (iter) for the time-windowed (left) and the
final trajectory estimate (right). The different lines correspond to the scenarios.

Increasing the number of iterations mostly decreases the error, especially for the final
trajectory estimate. If new but wrong correspondences are found after an ICP update step,
it is possible that the error increases, like in the time-windowed estimate of the box trajec-
tory (fig. 5.11) or the final estimate of the stairs trajectory when doing only four iterations.
If no new correspondences are found, we are in a local minima, thus further iterations
won’t reduce the error anymore as in the time-windowed estimate of the box and loop
trajectory at three and more iterations.

5.4.2 Knot spacing (taus)

The knot spacing of our B-spline trajectory representation has a dramatic effect on the per-
formance. If it is too high, we cannot adequately represent high-frequency components of
the trajectory. However, if it is too low, the optimization problem might become under-
constrained if we do not have enough surfel matches between certain segments. The state
size to optimize doubles when halving the knot spacing, and thus the computational com-
plexity increases. The optimal value depends on the complexity of the motion to represent.

65

5 Evaluation

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

·10−2

taus

at
e

W

box
loop
stairs

0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

·10−2

taus

at
e

F

Figure 5.12: Effect of modifying the knot spacing (taus) τs for the time-windowed (left) and the final
trajectory estimate (right). The different lines correspond to the scenarios.

It is thus advantageous to employ a rotating laser scanner with constant angular velocity
instead of a nodding laser scanner where the angular velocity changes as a periodic func-
tion.

5.4.3 Space discretization (voxelSize)

0.4 0.5 0.6 0.7 0.8

0

2

4

6
·10−2

voxelSize

at
e

W

box
loop
stairs

0.4 0.5 0.6 0.7 0.8

0

2

4

6

·10−2

voxelSize

at
e

F

Figure 5.13: Effect of modifying the space discretization (voxelSize) for the time-windowed (left)
and the final trajectory estimate (right). The different lines correspond to the scenarios.

The voxel size should be set accordingly to the scale at which most planar regions are
expected to be encountered in the environment. Smaller voxels do not automatically re-
duce the error. This is especially visible in the stairs scenario. The size of the steps must
be around 40cm. In fact, there is a correlation between the voxel size, the plane-likeness
threshold, the magnitude of ε in the disc shape prior and the accuracy. These parame-
ters together encode how geometry is processed and discretization noise accounted for. A
complete treatment of the interplay however is beyond the scope of this work.

66

6 Summary

6.1 Conclusion

We developed a method that is able to estimate a continuous 3D trajectory from an actu-
ated 2D laser scanner coupled to an IMU. Our method works especially well for indoor
environments, where the planarity assumption holds. The properties of our chosen trajec-
tory representation make it a perfect fit for continuous time trajectory estimation. The tra-
jectory estimate is initialized using inertial navigation techniques on IMU measurements.
The time-windowed processing is able to improve the initial trajectory estimate if there
are enough surfel matches between consecutive sweeps. The global optimization step fur-
ther allows to reduce the error by optimizing surfel matches and IMU constraints over the
duration of the complete trajectory all at once. If initialized well enough, it additionally
closes loops automatically, which further reduces the drift and distributes the remaining
error evenly. Evaluation on synthetic data with different scenarios, noise levels and pa-
rameter settings showed the versatility, stability and adaptability of our algorithm. The
experiments demonstrated the high accuracy of the algorithm, which is mostly limited by
the computational power one wants to invest.

6.2 Future work

This work demonstrated the feasibility of our approach and focused on a thorough un-
derstanding of all the intrinsic implementation details. However, there are still lots of
directions for extensions.

Evaluation on real data and comparison to other approaches This work focused on an
intrinsic evaluation of the algorithm which is only possible with synthesized sensor data
since it allows to test certain aspects and their accuracy compared to ground truth in iso-
lation. With the confidence in basic stability under noise and knowledge about the adapt-
ability options through different parameter settings, we could now test the algorithm on
real data. An extrinsic evaluation of the approach comparing it to other methods would
also be insightful. However, it seems that there is no publicly available benchmark for ac-
tuated 2D LiDAR. Instead of creating one on our own, it might be possible to adapt certain
parts of our algorithm to other input modalities.

Higher spline order As suggested in the related work section, we should examine if a
spline of even higher order can improve our trajectory’s representational power even with
a higher knot spacing and without introducing wiggles common to higher order interpo-
lation methods. This would allow to further reduce the state size and thus accelerate the
optimization.

67

6 Summary

More robust loop closures Loop closures are established during the correspondence step
of ICP by matching local surface properties such as centroid and normal derived via PCA.
This method is not very robust against false positive matches. It could be extended or
complemented by a 2D or 3D feature-based loop-closure detection algorithm.

68

Bibliography

[AB13] Sean Anderson and Timothy D Barfoot. Towards relative continuous-time slam.
In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages
1033–1040. IEEE, 2013.

[ABB14] Hatem Alismail, L Douglas Baker, and Brett Browning. Continuous trajectory
estimation for 3d slam from actuated lidar. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 6096–6101. IEEE, 2014.

[AHB87] K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-squares fitting
of two 3-d point sets. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, (5):698–700, 1987.

[AM] Sameer Agarwal and Keir Mierle. Ceres solver. http://ceres-solver.org.

[AMB15] Sean Anderson, Kirk MacTavish, and Timothy D Barfoot. Relative continuous-
time slam. The International Journal of Robotics Research, pages 1453–1479, 2015.

[BM92] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In
Robotics-DL tentative, pages 586–606. International Society for Optics and Pho-
tonics, 1992.

[BZ09] Michael Bosse and Robert Zlot. Continuous 3d scan-matching with a spinning
2d laser. In Robotics and Automation, 2009. ICRA’09. IEEE International Conference
on, pages 4312–4319. IEEE, 2009.

[BZF12] Michael Bosse, Robert Zlot, and Paul Flick. Zebedee: Design of a spring-
mounted 3-d range sensor with application to mobile mapping. IEEE Trans-
actions on Robotics, 28(5):1104–1119, 2012.

[CM91] Yang Chen and Gérard Medioni. Object modeling by registration of multiple
range images. In Robotics and Automation, 1991. Proceedings., 1991 IEEE Interna-
tional Conference on, pages 2724–2729. IEEE, 1991.

[DKL98] Erik B Dam, Martin Koch, and Martin Lillholm. Quaternions, interpolation and
animation. Datalogisk Institut, Københavns Universitet, 1998.

[Far02] Gerald Farin. Curves and Surfaces for CAGD. 5 edition, 2002.

[FBS12] Paul Furgale, Timothy D Barfoot, and Gabe Sibley. Continuous-time batch esti-
mation using temporal basis functions. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 2088–2095. IEEE, 2012.

69

http://ceres-solver.org

Bibliography

[FCDS15] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. Imu
preintegration on manifold for efficient visual-inertial maximum-a-posteriori
estimation. In Robotics: Science and Systems XI, number 214687, 2015.

[FCF12] Simone Fantoni, Umberto Castellani, and Andrea Fusiello. Accurate and auto-
matic alignment of range surfaces. In 3DIMPVT, pages 73–80. Citeseer, 2012.

[Fit03] Andrew W Fitzgibbon. Robust registration of 2d and 3d point sets. Image and
Vision Computing, 21(13):1145–1153, 2003.

[For14] Per-Erik Forssén. Smoothing of so(3) and se(3). slerp, and splines on so(3).
Geometry for Computer Vision PhD course, Slides for lecture 7, 2014.

[FTBS15] Paul Furgale, Chi Hay Tong, Timothy D Barfoot, and Gabe Sibley. Continuous-
time batch trajectory estimation using temporal basis functions. The Interna-
tional Journal of Robotics Research, page 0278364915585860, 2015.

[GWA07] Mohinder S Grewal, Lawrence R Weill, and Angus P Andrews. Global position-
ing systems, inertial navigation, and integration. John Wiley & Sons, 2007.

[Haa15] Adrian Haarbach. 3d object reconstruction using point pair features. Bachelor’s
thesis, Technische Universität München, 2015.

[Han06] Andrew J. Hanson. Visualizing Quaternions. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2006.

[Hol08] Darryl D Holm. Geometric mechanics. Imperial College Press, 2008.

[Jia08] Yan-Bin Jia. Quaternions and rotations. Com S, 477(577):15, 2008.

[KKS95] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A general construc-
tion scheme for unit quaternion curves with simple high order derivatives. In
Proceedings of the 22nd annual conference on Computer graphics and interactive tech-
niques, pages 369–376. ACM, 1995.

[KZB16] Lukas Kaul, Robert Zlot, and Michael Bosse. Continuous-time three-
dimensional mapping for micro aerial vehicles with a passively actuated ro-
tating laser scanner. Journal of Field Robotics, 33(1):103–132, 2016.

[Low04] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp surface
registration. Chapel Hill, University of North Carolina, 2004.

[LPPS13] Steven Lovegrove, Alonso Patron-Perez, and Gabe Sibley. Spline fusion: A
continuous-time representation for visual-inertial fusion with application to
rolling shutter cameras. In BMVC, 2013.

[Mor97] Michael E. Mortenson. Geometric Modeling (2nd Ed.). John Wiley & Sons, Inc.,
New York, NY, USA, 2 edition, 1997.

[MSKS05] Y. Ma, S. Soatto, J. Kosecká, and S.S. Sastry. An Invitation to 3-D Vision: From
Images to Geometric Models. Interdisciplinary Applied Mathematics. Springer
New York, 2005.

70

Bibliography

[Par12] Rick Parent. Computer animation: algorithms and techniques. Newnes, 3 edition,
2012.

[PGK02] Mark Pauly, Markus Gross, and Leif P Kobbelt. Efficient simplification of point-
sampled surfaces. In Proceedings of the conference on Visualization’02, pages 163–
170. IEEE Computer Society, 2002.

[PPLS15] Alonso Patron-Perez, Steven Lovegrove, and Gabe Sibley. A spline-based tra-
jectory representation for sensor fusion and rolling shutter cameras. Interna-
tional Journal of Computer Vision, 113(3):208–219, 2015.

[RL01] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm.
In 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Confer-
ence on, pages 145–152. IEEE, 2001.

[SEE+12] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of rgb-d slam systems. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 573–
580. IEEE, 2012.

[SFSF15] Hannes Sommer, James Richard Forbes, Roland Siegwart, and Paul Furgale.
Continuous-time estimation of attitude using b-splines on lie groups. Journal of
Guidance, Control, and Dynamics, 39(2):242–261, 2015.

[SG15] Jacopo Serafin and Giorgio Grisetti. Nicp: Dense normal based point cloud
registration. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 742–749. IEEE, 2015.

[Sho85] Ken Shoemake. Animating rotation with quaternion curves. In ACM SIG-
GRAPH computer graphics, volume 19, pages 245–254. ACM, 1985.

[Sho87] Ken Shoemake. Quaternion calculus and fast animation. In ACM SIGGRAPH
Course Notes 10, Computer Animation: 3-D motion specification and control, num-
ber 10, pages 101–121. Siggraph, 1987.

[SHT09] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In
Robotics: Science and Systems, volume 2, 2009.

[TW04] David Titterton and John L Weston. Strapdown inertial navigation technology,
volume 17. IET, 2004.

[Woo07] Oliver J Woodman. An introduction to inertial navigation. University of Cam-
bridge, Computer Laboratory, Tech. Rep. UCAMCL-TR-696, 14:15, 2007.

[WW91] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques. ACM,
New York, NY, USA, 1991.

[WW03] Oliver Wulf and Bernardo Wagner. Fast 3d scanning methods for laser measure-
ment systems. In International conference on control systems and computer science
(CSCS14), pages 2–5. Citeseer, 2003.

71

	Acknowledgments
	Abstract
	Abbreviations
	Introduction
	Motivation
	Contributions
	Outline

	Background
	Rigid body motion
	Rotation matrices
	Quaternions
	Full rigid body motion parameterizations

	Sensors
	Light Detection And Ranging (LiDAR)
	Inertial Measurement Unit (IMU)

	Interpolating and approximating curves
	Linear interpolation (LERP)
	Bézier curve
	B-spline

	Principal Component Analysis (PCA)
	Curvature estimation
	Normal estimation

	Non-linear Least Squares (NLS)

	Related work
	Iterative Closest Point (ICP)
	Taxonomy
	Variants

	Actuated 2D LiDAR based SLAM
	Spinning Laser 2009
	Zebedee 2012
	Bentwing 2016

	Interpolating orientations
	Continuous time estimation

	Approach
	Motivation
	Trajectory representation
	Choice between B-spline and composite Bézier curve
	Cumulative B-spline quaternion curve
	Orientation interpolation methods
	Rigid body motion interpolation methods
	Summary

	Algorithm Overview
	Using IMU measurements
	Trajectory initialization via inertial navigation
	Synthesized inertial measurements
	Trajectory regularization constraints

	Using LiDAR measurements
	Accumulating 2D laser scans into a 3D sweep
	Generating surfels
	Surfel match constraints

	Model optimization
	Time-windowed optimization
	Global optimization

	Evaluation
	Evaluation metrics
	Scenarios
	Scenario box
	Scenario loop
	Scenario stairs

	Effect of noise
	Effect of different parameters
	Number of ICP iterations (iter)
	Knot spacing (taus)
	Space discretization (voxelSize)

	Summary
	Conclusion
	Future work

	Bibliography

